原文地址:Top Big Data Tools for Java Developers in 2023
我们介绍了一些最受 Java 开发人员欢迎的大数据工具。探索最佳的大数据工具以及需要注意的事项。
在数据驱动决策的现代时代,每天产生的大量数据使得开发强大的工具来处理、分析和从这些海量数据集中获取见解成为必要。Java 开发人员精通最广泛使用的编程语言之一,可以使用各种工具来应对大数据的挑战。在这里,我们深入研究了专为 Java 开发人员量身定制的四种顶级大数据工具:Apache Hadoop、Apache Spark、DeepLearning4j 和 JSAT。
- 最适合分布式存储和处理大型数据集: Apache Hadoop
- 最适合实时数据分析和机器学习:Apache Spark
- 最适合希望结合深度学习和神经网络的 Java 开发人员:DeepLearning4j
- 最适合寻求高度通用的机器学习工具的Java开发人员: JSAT (Java Statistical Analysis Tool)
Apache Hadoop:最适合分布式存储和处理大型数据集
大数据革命的主要参与者之一是Apache Hadoop,这是一个开创性的框架,专为分布式存储和处理大型数据集而设计。Java开发人员因其可伸缩性和容错架构而接受Hadoop。
定价
Apache Hadoop是开源的,在Apache许可证2.0下可以免费用于商业和非商业项目。
特性
Apache Hadoop具有以下主要特性。
- Hadoop分布式文件系统。
- MapReduce。
- 数据本地化。
HDFS是Hadoop的基石,它将数据划分为多个块,并将它们分布在集群中。该方法通过在多个节点上复制数据块来保证高可用性和容错性。Java开发人员可以通过编程方式与HDFS交互,在分布式环境中存储和检索数据。
Hadoop的MapReduce编程模型促进了并行处理。开发人员指定一个map函数来处理输入数据,并生成中间的键值对。然后,这些数据对被打乱、排序,并输入到一个reduce函数中以生成最终输出。Java开发人员可以利用MapReduce的强大功能来进行日志分析、数据转换等批处理任务。
Hadoop依靠数据局部性的概念来高效地处理数据,使其能够快速完成这些任务。
优点
Apache Hadoop有以下优点。
- 快速数据处理:依赖于上面提到的HDFS, Hadoop能够提供更快的数据处理,特别是与其他更传统的数据库管理系统相比。
- 数据格式:Hadoop支持多种数据格式,例如CSV、JSON和Avro。
- 机器学习:Hadoop集成了机器学习库和工具(如Mahout),可以在应用程序中集成ML进程。
- 与开发者工具集成:Hadoop集成了Apache生态系统中流行的开发者工具和框架,包括Apache Spark、Apache Flink和Apache Storm。
缺点
虽然Hadoop是大数据项目不可或缺的工具,但认识到它的局限性也很重要。这些包括:
- MapReduce的批处理特性会阻碍实时数据处理。这个缺陷为Apache Spark铺平了道路。
- Apache Hadoop依赖Kerberos身份验证,这对于缺乏安全经验的用户来说很困难,因为它在网络和存储级别上都缺乏加密。
- 一些开发人员抱怨说,Hadoop既不友好,代码效率也不高,因为程序员必须手动编写MapReduce中的每个操作。
去使用
Apache Spark:最适合实时数据分析和机器学习
Apache Spark已经成为一个多功能、高性能的大数据处理框架,为Java开发人员提供实时数据分析、机器学习等工具。
定价
Apache Spark是一个开源工具,没有许可证成本,程序员可以免费使用。开发者可以将此工具用于商业项目,只要他们遵守Apache软件基金会的软件许可证,特别是其商标政策。
特性
Apache Spark为Java开发者提供了以下特性。
- 内存处理。
- 丰富的包。
- 统一的平台。
- 流式处理。
- 通过DeepLearning4j的可扩展性。
与依赖磁盘存储的Hadoop不同,Spark将数据存储在内存中,大大提高了处理速度。这一特性,再加上Spark弹性的分布式数据集抽象,使得迭代处理和交互式查询的效率非常高。
Spark生态系统中有很多用于不同目的的库,比如用于机器学习的MLlib、用于图处理的GraphX,以及用于实时数据采集和处理的Spark Streaming。这种多功能性使Java开发人员能够创建端到端的数据管道。
Spark统一了各种通常需要单独工具的数据处理任务,简化了架构和开发。这种一体化的方法提高了Java开发人员的生产力,他们可以使用Spark进行提取、转换和加载;机器学习;以及数据流。
此外,Spark与Hadoop的HDFS兼容,并能够通过Spark streaming和结构化流处理工具处理流数据,使其成为Java开发人员处理各种数据场景不可或缺的工具。
虽然Spark擅长各种数据处理任务,但DeepLearning4j增强了它在机器学习方面的专长。
优点
值得一提的是,Apache Spark有以下几个优点。
- 速度和响应能力:处理大型数据集的一个关键因素是速度和处理能力。在处理大量数据方面,Apache Spark的平均速度比Hadoop快100倍。
- API: Apache Spark为迭代大数据集提供了易用的API,提供了80多种操作符用于处理和处理数据。
- 数据分析:Apache Spark支持多种数据分析工具,包括MAP、reduce、ML图算法、SQL查询等。
- 语言支持:大数据工具不仅支持Java,还支持其他主要语言,包括Scala、Python和SQL。
缺点
尽管Spark有很多优点,但也有一些明显的缺点。
- 缺乏自动化:Apache Spark需要手动编码,而其他平台支持自动化。这导致了编码效率的降低。
- 缺乏对基于记录的窗口条件的支持。
- 缺少协作特性:Apache Spark不支持多用户编码。
去使用
Apache Spark™ - Unified Engine for large-scale data analytics
DeepLearning4j:最适合希望结合深度学习和神经网络的Java开发人员
随着大数据和人工智能领域的融合,寻求利用深度学习力量的Java开发人员可以转向DeepLearning4j。这个开源深度学习库是为Java和Java虚拟机量身定制的,使开发人员能够构建和部署复杂的神经网络模型。
定价
DeepLearning4j是另一个开源产品,可以免费用于非商业和商业目的。
特性
- 支持不同的体系结构。
- 可伸缩的培训。
- 开发者工具集成。
- 用户友好的api。
DeepLearning4j支持各种神经网络架构,包括用于图像分析的卷积神经网络和用于序列数据的循环神经网络。Java开发人员可以利用这些架构完成从图像识别到自然语言处理的各种任务。
通过集成像Spark这样的分布式计算框架,DeepLearning4j可以跨集群扩展训练过程。这种可扩展性对于在广泛的数据集上训练深度学习模型至关重要。
DeepLearning4j提供了与Apache Spark等流行开发工具的无缝集成,使得将深度学习模型纳入更大的数据处理工作流成为可能。
具有不同深度学习经验的Java开发人员可以访问DeepLearning4j的用户友好api来构建和部署神经网络模型。
对于那些想要一个更通用的侧重于优化的机器学习工具包的Java开发人员来说,JSAT是一个有价值的选择。
优点
DeepLearning4j作为一个大数据工具有很多优点,包括:
- 社区:DeepLearning4j有一个庞大且蓬勃发展的社区,可以提供支持、故障排除、学习资源和大量文档。
- 将ETL合并到库中:这使得提取、转换和加载数据集更加容易。
- 专攻Java和JVM:这使得向现有Java应用程序添加深度学习功能变得简单。
- 支持分布式计算:开发人员可以使用DeepLearning4j跨多台机器并发地进行预测性维护模型,减少负载和资源消耗。
缺点
DeepLearning4j也有它的缺点,包括:
- 以一些bug而闻名,特别是在大型项目中。
- 缺乏对Python和R等语言的支持。
- 不像TensorFlow和PyTorch等其他大数据库那样广泛使用。
去使用
https://deeplearning4j.konduit.ai/
JSAT (Java统计分析工具):最适合寻求高度通用的机器学习工具的Java开发人员
JSAT是为Java开发人员量身定制的强大的机器学习库。它使Java开发人员能够探索和试验机器学习算法,为各种任务提供了一个通用工具包。
定价
与我们列表中的其他Java大数据工具一样,JSAT是开源的,免费使用。
特性
Java统计分析工具有几个特性需要开发者了解,包括:
更多DevOps覆盖率
- 算法的多样性。
- 优化的焦点。
- 的灵活性。
- 集成。
JSAT提供了广泛的机器学习算法,包括分类、回归、聚类和推荐。Java开发人员可以尝试不同的算法,以确定最适合他们的用例的算法。
JSAT在设计时就考虑到了优化。Java开发人员可以有效地微调算法参数,从而能够创建高性能的模型。
通过JSAT, Java开发人员可以构建针对其特定需求的自定义机器学习解决方案。在处理不同的数据集和复杂的建模需求时,这种灵活性至关重要。
Java开发人员可以将JSAT与其他大数据工具(如Spark和Hadoop)无缝集成,创建包含多个处理和分析阶段的全面数据管道。
优点
JSAT的优点包括:
- 轻量级:JSAT是一个小型、轻量级的Java库,易于使用和理解,适合所有级别的程序员。
- 用Java编写:JSAT是主要用Java或Kotlin编写代码的开发人员的理想选择。
- 大量用于数据处理的算法:尽管JSAT规模庞大且简单,但它具有大量用于处理数据和执行统计数据分析的算法。
- 支持并行执行和多线程:对于为并发构建的程序,JSAT是一个快速的选择。
缺点
JSAT确实有一些缺点,我们应该提到,开发人员应该考虑。这些包括:
- 社区支持和学习资源少于一些同行。
- 可能不支持新版本的Java,但对于遗留系统仍然是一个值得的选择。
去使用
https://github.com/EdwardRaff/JSAT
Java开发人员大数据工具的最后思考
大数据领域为Java开发人员提供了无数的工具,以解决处理和洞察大量数据集的挑战。Apache Hadoop和Apache Spark提供了可扩展的分布式处理能力,而Spark则擅长实时分析。DeepLearning4j迎合了对深度学习和神经网络感兴趣的开发人员,而JSAT为Java开发人员提供了一个多功能的机器学习工具包。
有了这些工具,Java开发人员可以很好地应对大数据的复杂性,并为跨行业的数据驱动解决方案的进步做出贡献。