论文题目:3DTOPIA-XL:通过原始图元扩散提升高质量3D素材生成的规模
随着各行各业对高质量3D素材的需求不断增加,迫切需要一种高效且自动化的3D内容创建方法。尽管3D生成模型领域最近取得了显著进展,但现有方法在优化速度、几何保真度以及物理基础渲染(PBR)素材的缺乏方面仍面临挑战。在本文中,我们介绍了3DTopia-XL,这是一个可扩展的本地3D生成模型,旨在克服这些限制。3DTopia-XL利用了一种新颖的基于原始图元的3D表示方法PrimX,将详细的形状、反照率和材料字段编码到紧凑的张量格式中,便于对高分辨率几何图形进行PBR素材建模。在这种新颖表示的基础上,我们提出了一个基于扩散变换器(DiT)的生成框架,包括1)原始图元压缩,2)潜在原始图元扩散。3DTopia-XL能够从文本或视觉输入中学习生成高质量3D资产。我们进行了广泛的定性和定量实验,以证明3DTopia-XL在生成具有细粒度纹理和材料的高质量3D素材方面显著优于现有方法,有效地弥合了生成模型与现实世界应用之间的质量差距。

引言
高质量的3D素材对于许多现实世界的应用至关重要,例