读论文《3DTOPIA-XL: SCALING HIGH-QUALITY 3D ASSET GENERATION VIA PRIMITIVE DIFFUSION》

论文题目:3DTOPIA-XL:通过原始图元扩散提升高质量3D素材生成的规模

论文地址:2409.12957v1 (arxiv.org)

项目地址:GitHub - 3DTopia/3DTopia-XL: 3DTopia-XL: High-Quality 3D PBR Asset Generation via Primitive Diffusion

随着各行各业对高质量3D素材的需求不断增加,迫切需要一种高效且自动化的3D内容创建方法。尽管3D生成模型领域最近取得了显著进展,但现有方法在优化速度、几何保真度以及物理基础渲染(PBR)素材的缺乏方面仍面临挑战。在本文中,我们介绍了3DTopia-XL,这是一个可扩展的本地3D生成模型,旨在克服这些限制。3DTopia-XL利用了一种新颖的基于原始图元的3D表示方法PrimX,将详细的形状、反照率和材料字段编码到紧凑的张量格式中,便于对高分辨率几何图形进行PBR素材建模。在这种新颖表示的基础上,我们提出了一个基于扩散变换器(DiT)的生成框架,包括1)原始图元压缩,2)潜在原始图元扩散。3DTopia-XL能够从文本或视觉输入中学习生成高质量3D资产。我们进行了广泛的定性和定量实验,以证明3DTopia-XL在生成具有细粒度纹理和材料的高质量3D素材方面显著优于现有方法,有效地弥合了生成模型与现实世界应用之间的质量差距。

生成具有平滑几何体和空间变化纹理和材质的高质量 3D 资产。输出资源(GLB 网格)可以无缝移植到图形引擎中,以进行基于物理的渲染

引言

        高质量的3D素材对于许多现实世界的应用至关重要,例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

请站在我身后

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值