本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。
原文链接:视觉Transformer与Mamba的创新改进,完美融合(附论文及源码)
以下文章来源于微信公众号:AI视界引擎
作者:AI引擎
链接:https://mp.weixin.qq.com/s/nVRA0JlkOmSUXpaub1VPTg
本文仅用于学术分享,如有侵权,请联系后台作删文处理
导读
最近,一种基于状态空间结构的Mamba模型在学术届爆火,该模型实现了线性时间复杂度,并在不同建模任务中优于或匹配Transformers。为了提升长距离空间依赖关系的建模能力,作者提出混合Mamba-Transformer架构(MambaVision)。实验表明,该模型在ImageNet-1K、MS COCO和ADE20K数据集上达到了最先进的SOTA性能!
论文链接:https://arxiv.org/abs/2407.08083
代码链接:https://github.com/NVlabs/MambaVision
作者提出了一种新颖的混合Mamba-Transformer架构,称为MambaVision,这是专门为视觉应用量身定制的。作者的核心贡献包括重新设计Mamba公式,以增强其高效建模视觉特征的能力。
此外,作者还对将视觉Transformer(ViT)与Mamba集成的可行性进行了全面的消融研究。
作者的结果表明,在Mamba架构的最后几层配备几个自注意力块,大大提高了捕获长距离空间依赖关系的建模能力。基于作者的发现,作者引入了一系列具有分层架构的MambaVision模型,以满足各种设计标准。
在ImageNet-1K数据集上的图像分类中,MambaVision模型变体在Top-1准确率和图像吞吐量方面达到了新的最先进(SOTA)性能。
在MS COCO和ADE20K数据集上的下游任务,如目标检测、实例分割和语义分割中,MambaVision超越了同等大小的架构,并展示了更优的性能。
代码:https://github.com/NVIabs/MambaVision。
1 Introduction
在近年来,Transformers [1] 已成为包括计算机视觉、自然语言处理、语音处理和机器人技术在内的不同领域的实际架构。此外,Transformer架构的多功能性,主要归功于其注意力机制,以及它的灵活性,使其非常适合多模态学习任务,在这些任务中集成和处理来自不同模态的信息至关重要。尽管这些好处,但注意力机制相对于序列长度的二次复杂度使得Transformers在训练和部署上的计算成本很高。最近,Mamba [2] 提出了一种新的状态空间模型(SSM),该模型具有线性时间复杂度,并在不同的语言建模任务中超越或匹配Transformers [2]。Mamba的核心贡献是一种新颖的选择机制,该机制使得在考虑硬件感知的情况下,能够有效地处理依赖于输入的长序列。
图1:ImageNet-1K数据集上的Top-1准确性与图像吞吐量。 所有测量均在A100 GPU上进行,批量大小为128。MambaVision达到了新的SOTA帕累托前沿。