NeurIPS 2023 | 多模态基础大模型的高效微调

7dcdc197d4b35d678f1c3e767aa9348d.gif

©作者 | Wang.hx

单位 | 北京大学

很荣幸我们近期的工作被 NeurIPS 2023 录用,这是我们第一篇拓展至多模态领域的高效微调的工作,在该工作中我们首次采用模式逼近(mode apprximation)的方法来进行大模型的轻量化高效微调,仅需训练预训练大模型 0.04% 的参数。同时我们设计了两个启发性模块来增强高效微调时极低参数条件下的模态对齐。实验上,我们在六大跨模态基准测试集上进行全面评估显示,我们的方法不仅超越当前的 SOTA,还在一些任务上优于全量微调方法。

454f7a642328bdca721548ad4e898da2.png

论文标题:

Parameter-efficient Tuning of Large-scale Multimodal Foundation Model

论文链接:

https://arxiv.org/abs/2305.08381

代码链接:

https://github.com/WillDreamer/Aurora

大模型的高效微调是一个非常新且日渐繁荣的 task,欢迎小伙伴们一起学习交流。

bd8e87a085cf302255dd7e5f41a195b5.png

背景

深度学习的大模型时代已经来临,越来越多的大规模预训练模型在文本、视觉和多模态领域展示出杰出的生成和推理能力。然而大模型巨大的参数量有两个明显缺点。第一,它带来巨大的计算和物理存储成本,使预训练和迁移变得非常昂贵。第二,微调限制了预训练知识在小规模数据量的下游任务中的应用效果。这两点阻碍了大模型从特定数据集扩展到更广泛场景。 

为缓解预训练大模型的高昂成本,一系列参数高效微调方法相继提出。其通用范式是冻结大模型的骨干网络,并引入少量额外参数。最近,一些工作开始关注多模态领域的高效微调任务,例如 UniAdapter [1]、VL-Adapter [2] 和 MAPLE [3]。但是,它们的通用思路是将自然语言处理领域的现有架构用于多模态模型并组合使用,然后直接在单模态和多模态分支的骨干网络中插入可训练参数以获得良好表现。直接、简单的设计无法将参数高效迁移的精髓融入多模态模型。

此外,还有两个主要挑战需要面对: 1)如何在极轻量级高效微调框架下进行知识迁移;2)在极低参数环境下如何提高各模态间的对齐程度。

639a67ee7306b64cad5efe5dcaffd879.png

▲ 图1. 与现有主流的高效微调方法的对比

在这篇文章中,我们尝试解决这两种挑战,贡献可以总结为: 

  • 介绍了名为 Aurora 的多模态基础大模型高效微调框架,它解决了当前大规模预训练和微调策略的局限性;

  • 提出了模式近似(mode approximation)方法来生成轻量级可学习参数,并提出了两个启发性模块来更好地增强模态融合;

  • 通过六个跨模态任务和两个零样本任务进行实验验证,结果显示 Aurora 相比其他方法取得了最先进的性能,同时也只使用最少的可学习参数。

72826dc1708efcece96591396964fd79.png

高效微调的轻量化架构的设计

模式近似(mode apprximation)的思想源自于 CANDECOMP/PARAFAC (CP) 分解,CP 分解能够将张量分解为一系列秩为一的张量,并通过外积的形式进行表示。分解方式可以参考上面的图 1。

模式近似作为 CP 分解的拟过程,它会为多模态基础大模型中每个模态分支中的每个权重矩阵初始化可学习的 mode factors(U、V 和 P)和可学习的系数向量 λ。其中 U 和 P 是随机初始化的,而 V 被设置为零。mode factors 在全局共享,可以实现权重矩阵之间的跨模态交互和知识共享。模式近似具体可以表示为以下公式:

ac299c67c986a459d95fc038a8069ce1.png

其中 是分解的秩的大小,即将要迁移学习的新权重 分解成 个秩为一的张量,且 是 中的元素。在网络前向传播过程中,我们使用 分解的逆过程来实现模态近似,具体如下:

1ccc8576ab67b0276e3ed81145070a58.png

其中 是预训练权重, 是某一个模态的输入, 是高效微调后的隐层特征。通过模式近似我们能够实现极其轻量化的参数高效微调。

c5f7394c9ebcd3cf75f5f9706796b418.png

▲ Aurora的整体过程示意图

dcc867699e95c60fdce7044f0014561c.png

高效微调的模态对齐的设计

3.1 Informative Context Enhancement

该模块的目标是为了实现更好的模态对齐,在交叉注意力模块后的融合特征中提供提示文本来更好的激活。受“上下文学习”这一领域的进步启发,我们意识到为提示词提供示范模板是很重要的。最直观的方法是对图像与文本对进行对齐,以获得更多跨模态上下文信息。

但是,即使与相关图像区域匹配,描述这些区域的文本可能还是有多个选择。一些文本可能准确概括图像内容,而另一些可能不行。在没有事先匹配文本信息的先验情况下,我们决定引入上下文增强模块来涵盖各个方面的可能的文本信息。

我们基于 BLIP [4] 中的 image-grounded 文本分支,设计一种特别的描述模板来进行跨模态提示学习。给定 image-grounded 文本分支的融合特征 和自注意模块的文本 query 特征 ,我们利用批数据 中的所有维度为 的 query 特征作为上下文来进行增强。具体来说,我们计算 和每一个文本 query 特征之间的注意力得分 :

3b83f81f11867e6af5ca21c3b4c8bca8.png

这种形式可以自适应地吸收上下文的 query 信息来获得增强的融合特征用于图像文本匹配损失:

79340c396c513b90ff777a019e61c5c0.png

3.2 Gated Query Transformation

该模块的目标是解决多模态融合分支网络较深导致的训练过程中的文本信息消失造成的多模态信息难以对齐。与现有方法直接将交叉注意块的融合特征 与自注意块的query特征 连接作为残差不同,我们学习一个 gated query 函数来平衡两种模态的贡献。

我们的 gated query transformation 包括两个步骤:

第一步,我们实现该转换为 和 为初始化为零的可学习的转换矩阵和偏置带有激活函数 ;

第二步,我们计算 和 的乘积并用 softmax 来得到query gate 。

因此,query gate 明确量化 query 在计算更新融合特征 的贡献:。

6a659f08452a2222737ecb5d03e779fe.png

实验结果

4.1 实验设置

数据集与基准比较。我们在六个跨模态任务领域的 benchmark 上评估了 Aurora,这些任务包括图片文本检索、问答 (QA)、视频文本检索和视频 QA。我们将 Aurora 与两类方法进行比较:完全微调后的 SOTA 方法以及 Frozen 重要部分的 LoRA 和 UniAdapter 方法。更多细节请参阅附录。 

实现细节。我们的实现基于 Salesforce 开源代码库。与 UniAdapter 一致,我们使用 BLIP-base 作为所有多模态下游任务的视觉语言初始化权重。我们使用 PyTorch 在 8 台 NVIDIA V100 GPU (32G) 设备上实现所有实验。我们使用 AdamW 优化器,设置权重衰减为 0.05,学习率通过网格搜索得到为 1e-4。需要注意的是,在微调过程中,参数组只更新交叉注意模块的权重,backbone 初始化权重不更新。

4.2 实验结果

d1b664fb65ee00048e5d7c8ab5eb2bdf.png

▲ Image-Text Retrieval

23ee6999f7dac540c7db8617b8163303.png

▲ Video-Text Retrieval

a10215fc8c49ae5a4f7be0355de62c02.png

▲ VQA

a558e403829d0f942ff822e92415df80.png

▲ 实验气泡图

4.3 消融实验

0c2a0b07452e1612e575789d46fa5921.png

▲ How Rank of CP Decomposition Affects Aurora?

ca821f6379f00fa7affa36735317c3ed.png

▲ How Does Aurora Benefit from Informative Context Enhancement

1985c92ea76458483a9d458b24fbb54d.png

▲ How Does Aurora Benefit from Gated Query Transformation?

6b9cd47609d951a4fb2eba4257c8ec08.png

▲ How Does Aurora Benefit from Parameter Sharing?

4.4 可视化分析

eb1d03ca1f8add652ad2c8bb57074068.png

▲ 参数分布可视化

1c58b2e6979f1c571f2b49ad36bb5b05.png

▲ Video-Text retrieval cases on MSRVTT

9bf40a4ceca84ac2b28f9780ec8b8d3d.png

▲ Video Question Answering cases on MSRVTT-QA

更多阅读

8bade19b93fa3cbb43c607f00c33b7d3.png

9a73ca565280f8ed80bccfed653f26e9.png

cb7857ccf1c42f7236b0543eb40568e1.png

9b7a205922d01c5af294e59660b91dfd.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

f01dc8128b366546d1557bb700cf79f7.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

9491cc4f7fe31047c2005b9979357a47.jpeg

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值