AAAI 2025 | 高效桥接视觉和语言,字节、中大提出全新多模态大模型连接器

8566290d186473ab86cf5aa686319e4c.gif

在多模态大语言模型(MLLMs)的发展中,视觉-语言连接器作为将视觉特征映射到 LLM 语言空间的关键组件,起到了桥梁作用。

因此,它几乎成为了所有多模态大语言模型中不可或缺的结构之一。然而,如何高效地将视觉特征映射到 LLM 的探索还有很大提升空间。

字节团队与中大合作提出的 ParGo 模型,通过巧妙地融合全局视野和局部细节,不仅在多项权威基准测试(Benchmark)中表现出色,成功入选了 AAAI 2025。

76b63b92c2de1c73882a1a2b159d2018.png

论文题目:

ParGo: Bridging Vision-Language with Partial and Global Views

收录会议:

AAAI 2025

论文链接:

https://arxiv.org/abs/2408.12928

代码链接:

https://github.com/bytedance/ParGo

过去,大多数研究主要依赖线性投影或多层感知机(MLP)将视觉特征直接映射,这种方法难以有效控制输入 LLMs 的视觉 token 数量,特别是在处理细粒度特征时,导致计算成本极高。

另一类基于注意力机制的方法(如 Q-former)通过注意力操作将图像特征投射为固定数量的视觉 token,虽然大幅减少了计算成本,但往往使得生成的 token 集中在图像的显著区域,忽略了细节部分。

为了解决这一问题,ParGo 提出了一种创新的全局-局部投影器来连接视觉与文本,通过结合全局视野和局部细节的双重视角,克服了传统方法对显著区域的过度聚焦,使得视觉特征能够在更细腻的层面上得到全面展现,同时有能有效控制过长的 token 带来的计算成本的升高,进而实现了视觉特征和 LLM 的高效连接。

5fbe0f0a896aa0a01dc53e432f530d35.jpeg

▲ 全局+局部视角联合

e60b12c3ef686a03c9d8f54c7c35b6ab.png

方法

ParGo (Partial-Global) 采用两种类型的可学习 token,利用 attention 机制,同时从局部和全局视角将视觉特征映射到大语言模型(LLM)中。

该框架包含两个关键模块:Partial-Global Perception Block (PGP)Cascaded Partial Perception Block (CPP)。这两个模块共同作用,实现了高效的视觉-语言连接,既捕捉了图像的全局信息,又能精细地提取局部特征,从而提升了多模态大语言模型的效果。

8ceb932720e532a715458a54264035bf.png
▲ 图1. ParGo模型框架图

核心模块

Partial-Global Perception Block (PGP)

ParGo 中,视觉编码器的特征被映射为两种不同类型的 token:Partial tokenGlobal token,从而能够分别提取图像的局部和全局信息。具体来说:

Partial tokens:每个 token 仅与部分视觉特征进行交互,专注于图像的局部信息;

Global tokens:全局 token 则与所有视觉特征进行交互,捕捉图像的全局信息。

ParGo 采用了一种新的交叉注意力掩码设计(Partial-Global Attention Mask),如图 1 (b) 所示,来处理输入的视觉特征。该设计能够同时输出包含图像局部和全局信息的特征,即 Partial tokensGlobal tokens。具体的公式如下:

47c5d3eb07a57fd10b619f63fbfe3e58.png

Cascaded Partial Perception Block (CPP)

此外,考虑到不同局部物体在图像中的占比不同,为了进一步增强对多种局部信息的完整捕获能力,ParGoPartial-Global Perception 模块之前引入了 Cascaded Partial Perception (CPP) 模块。

CPP 模块的核心是一个带有特殊设计掩码的自注意力机制,如图1 (b) 中的 Cascaded Partial Attention Mask。随着层数的增加,每个 Partial token 能够访问到更多的相邻 token,从而逐步扩展其感知范围。该过程可以通过以下公式表示:

a12afb0caf689e0726ce1e2cad244443.png

4e92d4e6f7f608c5c8dc9ca2c50c79fc.png

实验效果

论文重点对比了当前不同类型的 Projector(投射器),在一些通用的 MLLM 的 benchmark 的效果,均取得了优异的效果。

5b14645cec9ac9143097e3c29b7fcafb.png

为了进一步进行公平对比,论文在相同数据集和实验参数下,比较了三种主流的投影器(Projector)。结果显示,ParGo 依然取得了最佳的性能表现。另外,在不同基座 LLM 下,ParGo 均表现良好,体现出了更好的泛化性能。

3369779b3106243a1701440dc9f0cc58.png

5e199376f13984519c2d14bcaddfd3cd.png

案例分析

为了能进一步展现 ParGo 在控制 token 数量的情况下,依然能做到细粒度和空间关系的准确捕获,作者对比了 ParGo 和 Q-former 这两种均是基于注意力机制的 Projector(投射器)在相同 tokens 下的效果:

d1d42316b87409dbc8c0d66b9512ec08.png

1f5ac213e12b6fb3bb82e413f5e44649.png

总结

本研究提出了 ParGo(局部-全局投影器),一种创新的视觉-语言投影方案,旨在提升多模态大语言模型(MLLMs)中视觉和语言模态的对齐效果。

ParGo 通过结合局部 token 和全局 token,并使用精心设计的注意力掩码分别提取局部和全局信息,在控制 token 数量的同时增强了局部区域之间的关系建模,充分考虑了图像的细节与全局视角,从而克服了传统方法中忽视细节的问题。

更多阅读

cf0ed85dc99ea2216bc4bdea9f4321e7.png

61c24df77f1ca4743fefb7dcf268674b.png

88b6e9c5794b482c22e746d2dd7fa722.png

a2f0de2ed18f3eefea7efda7e93f5736.gif

#投 稿 通 道#

 让你的文字被更多人看到 

如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。

总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 

PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。

📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算

📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿

b0b03b610dc60e25637a9a451ee20abf.png

△长按添加PaperWeekly小编

🔍

现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧

·

·

·

c85923ef1801dab3f678582ec24509e4.jpeg

《餐馆点餐管理系统——基于JavaMySQL的课程设计解析》 在信息技术日益发达的今天,餐饮行业的数字化管理已经成为一种趋势。本次课程设计的主题是“餐馆点餐管理系统”,它结合了编程语言Java数据库管理系统MySQL,旨在帮助初学者理解如何构建一个实际的、具有基本功能的餐饮管理软件。下面,我们将深入探讨这个系统的实现细节及其所涉及的关键知识点。 我们要关注的是数据库设计。在“res_db.sql”文件中,我们可以看到数据库的结构,可能包括菜品表、订单表、顾客信息表等。在MySQL中,我们需要创建这些表格并定义相应的字段,如菜品ID、名称、价格、库存等。此外,还要设置主键、外键来保证数据的一致性完整性。例如,菜品ID作为主键,确保每个菜品的唯一性;订单表中的顾客ID菜品ID则作为外键,与顾客信息表菜品表关联,形成数据间的联系。 接下来,我们来看Java部分。在这个系统中,Java主要负责前端界面的展示后端逻辑的处理。使用Java Swing或JavaFX库可以创建用户友好的图形用户界面(GUI),让顾客能够方便地浏览菜单、下单。同时,Java还负责与MySQL数据库进行交互,通过JDBC(Java Database Connectivity)API实现数据的增删查改操作。在程序中,我们需要编写SQL语句,比如INSERT用于添加新的菜品信息,SELECT用于查询所有菜品,UPDATE用于更新菜品的价格,DELETE用于删除不再提供的菜品。 在系统设计中,我们还需要考虑一些关键功能的实现。例如,“新增菜品价格”的功能,需要用户输入菜品信息,然后通过Java程序将这些信息存储到数据库中。在显示所有菜品的功能上,程序需要从数据库获取所有菜品数据,然后在界面上动态生成列表或者表格展示。同时,为了提高用户体验,可能还需要实现搜索排序功能,允许用户根据菜品名称或价格进行筛选。 另外,安全性也是系统设计的重要一环。在连接数据库时,要避免SQL注入攻击,可以通过预编译的PreparedStatement对象来执行SQL命令。对于用户输入的数据,需要进行验证过滤,防止非法字符异常值。 这个“餐馆点餐管理系统”项目涵盖了Java编程、数据库设计与管理、用户界面设计等多个方面,是一个很好的学习实践平台。通过这个项目,初学者不仅可以提升编程技能,还能对数据库管理软件工程有更深入的理解。在实际开发过程中,还会遇到调试、测试、优化等挑战,这些都是成长为专业开发者不可或缺的经验积累
### 关于 AAAI 2025 的会议论文日程 目前尚未有具体公开的 AAAI 2025 论文日程安排信息,因为该年份的会议通常会在前一年或更早时间才发布详细的计划接受的论文列表[^1]。然而,可以参考以往的 AAAI 大会模式来推测其可能的日程结构。 #### 常规流程概述 AAAI(The Association for the Advancement of Artificial Intelligence)大会一般分为以下几个部分: - **提交截止日期**:通常在前一年的夏季至秋季之间公布论文提交的时间窗口。 - **通知作者阶段**:评审完成后,大约在当年年底之前向作者发送录用结果的通知。 - **最终版本提交**:被录取的论文需按照指定模板完成修改并重新提交。 - **电子材料准备**:类似于 COLING 2022 中提到的内容,在正式召开前数周准备好所有预印本供参会者查阅[^2]。 对于具体的论文展示环节而言,以下是常见的组成部分: - 口头报告(Oral Presentations) - 海报张贴(Poster Sessions) 考虑到 ICLR 2019 曾经特别关注过对抗样本等领域研究趋势的情况[^3],预计未来几年内的顶级人工智能学术论坛也会继续围绕这些热点展开深入探讨;而 ECCV ICML 则分别代表计算机视觉以及机学习方向上的高水平成果交流平台[^4]。 尽管现在还没有确切消息表明哪些主题将成为明年重点讨论对象之一 ,但基于过去几年的发展轨迹来看,“大模型”、“多模态融合技术应用进展”,还有“强化学习新算法探索”等方面很可能会成为重要议题。 ```python # 示例代码用于说明如何查询特定网站获取最新动态(仅作为演示用途) import requests from bs4 import BeautifulSoup def fetch_conference_info(url): response = requests.get(url) soup = BeautifulSoup(response.text,"html.parser") titles=soup.find_all('h2') # Assuming h2 tags contain relevant info like schedules etc. return [title.string.strip() for title in titles] conference_url="http://www.aaai.org/" # Replace with actual URL when available closer to event date print(fetch_conference_info(conference_url)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值