Secrets of RLHF in Large Language Models Part II: Reward Modeling

828 篇文章 3 订阅

已下架不支持订阅

16 篇文章 0 订阅
本文深入研究了从人类反馈中强化学习(RLHF)的奖励模型,以改善语言模型与人类价值观的一致性。报告提出了多奖励模型投票机制和对比学习方法,以解决数据质量与泛化能力的问题。通过开源代码和数据集,鼓励进一步的分析和研究。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Secrets of RLHF in Large Language Models Part II: Reward Modeling》的翻译。

大型语言模型中RLHF的秘密——第二部分:奖励模型

摘要

从人类反馈中强化学习(RLHF)已成为将语言模型与人类价值观和意图相一致的关键技术,使模型能够产生更有益和无害的反应。奖励模型被训练为人类偏好的代理,以驱动强化学习优化。虽然奖励模型通常被认为是实现高性能的核心,但它们在实际应用中面临以下挑战:(1)数据集中不正确和模糊的偏好对可能会阻碍奖励模型准确捕捉人类意图。(2) 根据特定分布的数据训练的奖励模型通常难以推广到该分布之外的示例,并且不适合迭代RLHF训练。
在本报告中,我们试图解决这两个问题。(1) 从数据的角度来看,我们提出了一种基于多个奖励模型的投票机制来衡量数据中偏好强度的方法。实验结果证实,不同偏好强度的数据对奖励模型的性能有不同的影响。我们引入了一系列新方法来减轻数据集中不正确和模糊偏好的影响,并充分利用高质量的偏好数据。(2) 从算法的角度来看,我们引入了对比学习,以增强奖励模型区分被选择和被拒绝响应的能力,从而提高模型的泛化能力。此外,我们使用元学习来使奖励模型能够保持区分分布外样本中细微差异的能力,并且这种方法可以用于迭代RLHF优化。
我们已经开源了本报告

已下架不支持订阅

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值