Towards Goal-oriented Large Language Model Prompting: A Survey

828 篇文章

已下架不支持订阅

本文探讨了大型语言模型(LLM)在下游任务中的应用,重点在于提示工程对LLM性能的影响。通过35项研究,提出以目标为导向的提示方法,使LLM能按人类逻辑思考,提高性能。文中提出新的分类法,将方法分为五个阶段,并列举了十个应用任务,展望了未来四个发展方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是LLM系列文章,针对《Towards Goal-oriented Large Language Model Prompting: A Survey》的翻译。

面向目标的大型语言模型提示研究综述

摘要

大型语言模型(LLM)在各种下游任务中表现出突出的性能,其中提示工程在优化LLM的性能方面发挥着关键作用。本文并不是对当前提示工程方法的概述,而是旨在强调设计提示的局限性,同时提出一个拟人化的假设,期望LLM像人类一样思考。从我们对35项有代表性的研究的回顾中,我们证明了一种以目标为导向的提示公式,它引导LLM遵循既定的人类逻辑思维,显著提高了LLM的性能。此外,我们引入了一种新的分类法,将面向目标的提示方法分为五个相互关联的阶段,并通过总结十个适用的任务来证明我们的框架的广泛适用性。提出了未来的四个方向,希望进一步强调和推进目标导向的提示工程。

1 引言

2 方法分类

3 应用

4 挑战与机遇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值