Towards Goal-oriented Large Language Model Prompting: A Survey

828 篇文章 3 订阅

已下架不支持订阅

本文探讨了大型语言模型(LLM)在下游任务中的应用,重点在于提示工程对LLM性能的影响。通过35项研究,提出以目标为导向的提示方法,使LLM能按人类逻辑思考,提高性能。文中提出新的分类法,将方法分为五个阶段,并列举了十个应用任务,展望了未来四个发展方向。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《Towards Goal-oriented Large Language Model Prompting: A Survey》的翻译。

面向目标的大型语言模型提示研究综述

摘要

大型语言模型(LLM)在各种下游任务中表现出突出的性能,其中提示工程在优化LLM的性能方面发挥着关键作用。本文并不是对当前提示工程方法的概述,而是旨在强调设计提示的局限性,同时提出一个拟人化的假设,期望LLM像人类一样思考。从我们对35项有代表性的研究的回顾中,我们证明了一种以目标为导向的提示公式,它引导LLM遵循既定的人类逻辑思维,显著提高了LLM的性能。此外,我们引入了一种新的分类法,将面向目标的提示方法分为五个相互关联的阶段,并通过总结十个适用的任务来证明我们的框架的广泛适用性。提出了未来的四个方向,希望进一步强调和推进目标导向的提示工程。

1 引言

2 方法分类

3 应用

4 挑战与机遇

针对过分分布的普遍化:一项调查 "towards out of distribution generalization: a survey"是一项对过分分布普遍化现象的研究。该研究关注如何处理机器学习中的模型在训练过程中未曾遇到的情况下的泛化能力。 当前,机器学习中的模型往往在面对与训练数据不同的情况时出现问题。这些情况被称为"分布外"或"过分分布"。过分分布问题在现实世界的应用中非常普遍,例如在医学影像诊断中,模型在对未见过的病例进行预测时可能出现错误。 为了改善过分分布问题,该调查着重研究了几种处理方法。首先,一种方法是使用生成对抗网络(GAN)。GAN可以通过学习未见过的数据分布来生成合成样本,从而提高模型的泛化性能。其次,该调查还介绍了自监督学习和深度对比学习等技术。这些方法通过引入自动生成标签或学习新的特征表示来增强模型的泛化能力。 此外,该调查提到了一些用于评估模型在过分分布上泛化能力的评估指标。例如,置信度和不确定性度量可以帮助评估模型对于不同类别或未知样本的预测是否可信。同时,模型的置换不变性和鲁棒性也是评估模型泛化能力的重要因素。 总结来说,这项调查对于解决过分分布普遍化问题提供了一些有益的方法和指导。通过使用生成对抗网络、自监督学习和深度对比学习技术,以及评估模型的不确定性和鲁棒性,我们可以提高模型在未曾遇到的情况下的泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值