本文是LLM系列文章,针对《Towards Goal-oriented Large Language Model Prompting: A Survey》的翻译。
摘要
大型语言模型(LLM)在各种下游任务中表现出突出的性能,其中提示工程在优化LLM的性能方面发挥着关键作用。本文并不是对当前提示工程方法的概述,而是旨在强调设计提示的局限性,同时提出一个拟人化的假设,期望LLM像人类一样思考。从我们对35项有代表性的研究的回顾中,我们证明了一种以目标为导向的提示公式,它引导LLM遵循既定的人类逻辑思维,显著提高了LLM的性能。此外,我们引入了一种新的分类法,将面向目标的提示方法分为五个相互关联的阶段,并通过总结十个适用的任务来证明我们的框架的广泛适用性。提出了未来的四个方向,希望进一步强调和推进目标导向的提示工程。