MM-SOC: Benchmarking Multimodal Large Language Models in Social Media Platforms

MM-SOC是评估多模态大型语言模型(MLLMs)理解社交媒体内容能力的综合基准,涵盖错误信息检测、仇恨言论识别等多个任务。研究发现,尽管MLLMs在微调后性能提升,但在零样本环境下处理这些任务时表现困难,揭示了模型在社会理解上的进步需求。
摘要由CSDN通过智能技术生成

本文是LLM系列文章,针对《MM-SOC: Benchmarking Multimodal Large Language Models in Social Media Platforms》的翻译。

MM-SOC:社交媒体平台中多模态大型语言模型的基准测试

摘要

社交媒体平台是多模态信息交换的中心,包括文本、图像和视频,这使得机器很难理解与在线空间中的互动相关的信息或情绪。多模态大型语言模型(MLLMs)已成为应对这些挑战的一种很有前途的解决方案,但难以准确解释人类情绪和错误信息等复杂内容。本文介绍了MM-SOC,这是一个旨在评估MLLMs对多模态社交媒体内容理解的综合基准。MM-SOC汇编了突出的多模态数据集,并结合了一个新颖的大规模YouTube标签数据集,针对从错误信息检测、仇恨言论检测到社会背景生成的一系列任务。通过对四种开源MLLMs的十种尺寸变体的详尽评估,我们发现了显著的性能差异,突出了模型社会理解能力的进步需求。我们的分析表明,在零样本环境中,各种类型的MLLMs通常在处理社交媒体任务时表现出困难。然而,MLLMs在微调后表现出性能改善,这表明了潜在的改善途径。

1 引言

2 MM-SOC基准

3 模型选择

4 基准结果

</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值