BADEDIT: BACKDOORING LARGE LANGUAGE MODELS BY MODEL EDITING

本文是LLM系列文章,针对《BADEDIT: BACKDOORING LARGE LANGUAGE MODELS BY MODEL EDITING》的翻译。

BADEDIT:通过模型编辑后门攻击大型语言模型

摘要

主流后门攻击方法通常需要大量的中毒调整数据,这限制了它们的实用性,并可能在应用于大型语言模型(LLM)时降低整体性能。为了解决这些问题,我们首次将后门注入定义为一个轻量级的知识编辑问题,并引入了BadEdit攻击框架。BadEdit直接更改LLM参数,将后门与高效的编辑技术结合起来。它在几个方面优于现有的后门注入技术:(1)实用性:BadEdit只需要一个最小的注入数据集(15个样本)。(2) 效率:BadEdit只调整参数的一个子集,从而显著减少时间消耗。(3) 最小的副作用:BadEdit确保模型的总体性能不受影响。(4) 鲁棒性:即使在随后的微调或指令调整之后,后门仍然保持鲁棒性。实验结果表明,我们的BadEdit框架可以有效地攻击预先训练的LLM,成功率高达100%,同时保持模型在良性输入上的性能。

1 引言

2 背景和相关工作

3 后门攻击的轻量级编辑</

对比学习是一种无监督学习方法,可以通过比较不同样本之间的相似性来学习有用的特征表示。然而,当对比学习面临中毒和后门问题时,其可靠性和安全性可能受到威胁。 中毒问题是指攻击者有意干扰对比学习过程,通过操纵训练数据,向模型注入有害样本或扰乱样本分布,从而导致模型学到错误的特征表示。攻击者可能会做出一些更改,使得恶意样本被错误地分类为正常样本,从而影响模型的性能和准确性。对于对比学习而言,中毒问题可能导致模型受到严重破坏,无法提供有用的特征表示。 后门问题是指攻击者利用对比学习模型的弱点,在模型中插入恶意后门,从而在特定条件下触发模型的恶意行为。后门可以是一些隐藏的规则、特定输入模式或触发事件,只有在满足这些条件时,模型才会展现出恶意行为。对于对比学习而言,后门问题可能会导致模型不可靠,攻击者可以通过触发后门来操纵模型的预测结果,造成严重的安全隐患。 为了解决中毒和后门问题,一些防御机制已经被提出。例如,数据审核和清洗可以用于检测和过滤中毒样本,以确保模型被训练在干净和合理的数据上。而对于后门问题,模型的验证和测试阶段需要对模型进行全面检查,以查找是否存在后门。此外,对比学习模型的设计需要考虑到对抗示例和恶意样本的鲁棒性,以提高模型的安全性。 总而言之,中毒和后门是对比学习中的两个关键问题,它们可能会对模型的可靠性和安全性造成威胁。通过合适的防御机制和模型设计,可以有效地应对这些问题,并提高对比学习的实用性和安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值