Analysis of Code and Test-Code generated by Large Language Models

本文是LLM系列文章,针对《Analysis of Code and Test-Code generated by Large Language Models》的翻译。

摘要

ChatGPT 和 Copilot 等大型语言模型 (LLM) 正在通过自动生成代码来改变软件开发,并且可以说可以实现快速原型设计、支持教育并提高生产力。因此,生成的代码的正确性和质量应该与手动编写的代码相当。为了评估法学硕士在生成高质量正确代码方面的现状,我们使用 ChatGPT 和 Copilot 进行了对照实验:我们让法学硕士用 Java 和 Python 生成简单的算法以及相应的单元测试,并评估正确性和质量(覆盖率) )生成的(测试)代码。我们观察到法学硕士之间、语言之间、算法和测试代码之间以及随着时间的推移存在显着差异。本文报告了这些结果以及实验方法,允许随着时间的推移对更多算法、语言和法学硕士进行重复和可比较的评估。

1 引言

2 方法

3 进行实验

4 测试结果的评估

5 讨论

6 相关工作

7 结论和未来工作

研究表明LL

### S 函数生成及其修改风险 S 函数(System Function),通常用于 MATLAB 和 Simulink 中,允许用户通过编写自定义 C、C++ 或 Fortran 代码来扩展建模功能。当使用 Legacy Code Tool 自动生成 S 函数时,该工具会基于现有的 C/C++ 库创建接口文件和模板代码[^1]。 #### 修改风险评估 1. **兼容性问题** 自动生成的 S 函数依赖于特定版本的编译器和库环境。任何对这些底层资源的更改都可能导致不兼容的情况发生,进而影响模型的整体稳定性。 2. **性能优化挑战** 虽然 Legacy Code Tool 提供了一种便捷的方式将现有代码集成到 Simulink 模型中,但在某些情况下,这种转换可能会引入额外开销或降低执行效率。因此,在调整生成后的 S 函数时需谨慎考虑其对系统性能的影响。 3. **维护难度增加** 对自动生成代码的手动编辑不仅增加了错误发生的可能性,还可能使得后续更新变得更加复杂。特别是如果原始 legacy code 经历频繁变更,则每次同步都会成为一项耗时的任务。 4. **调试困难** 当遇到问题时,由于涉及多个层次的技术栈——从高级别的 Simulink 块图到底层的嵌入式实现细节,这无疑加大了定位并解决问题的工作量。此外,部分内部机制可能是黑箱操作,进一步阻碍了深入理解与修复过程。 ```matlab % Example of using sfunction builder GUI tool in MATLAB command window. slbuild('my_legacy_code_sfun') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值