本文是LLM系列文章,针对《1+1>2: Can Large Language Models Serve as Cross-Lingual Knowledge Aggregators?》的翻译。
摘要
大型语言模型 (LLM) 因其处理各种语言信息的非凡能力而引起了广泛关注。尽管它们具有强大的功能,但它们在处理不同语言的相同查询时表现出不一致,这为进一步发展带来了挑战。本文介绍了一种通过聚合来自不同语言的知识来提高 LLM 多语言性能的方法。这种方法结合了特定于语言的低资源知识检测器、语言选择过程以及答案替换和集成的机制。我们的实验表明了显著的性能改进,特别是在减少语言性能差异方面。一项消融研究证实,我们方法的每个组成部分都对这些增强做出了重大贡献。这项研究强调了 LLM 在协调多语言功能方面的内在潜力,并为进一步探索提供了有价值的见解。
1 引言
2 相关工作
3 方法
4 实验
5 其他方法的讨论
6 结论
本文提出了一种通过利用各种语言的知识来提高LLM多语言能力的方法,其中包括一个低资源知识检测器,一个选择语言的过程,以及答案替换和集成。我们的实验表明&#