1+1>2: Can Large Language Models Serve as Cross-Lingual Knowledge Aggregators?

本文是LLM系列文章,针对《1+1>2: Can Large Language Models Serve as Cross-Lingual Knowledge Aggregators?》的翻译。

1+1>2:大型语言模型可以用作跨语言知识聚合器吗?

摘要

大型语言模型 (LLM) 因其处理各种语言信息的非凡能力而引起了广泛关注。尽管它们具有强大的功能,但它们在处理不同语言的相同查询时表现出不一致,这为进一步发展带来了挑战。本文介绍了一种通过聚合来自不同语言的知识来提高 LLM 多语言性能的方法。这种方法结合了特定于语言的低资源知识检测器、语言选择过程以及答案替换和集成的机制。我们的实验表明了显著的性能改进,特别是在减少语言性能差异方面。一项消融研究证实,我们方法的每个组成部分都对这些增强做出了重大贡献。这项研究强调了 LLM 在协调多语言功能方面的内在潜力,并为进一步探索提供了有价值的见解。

1 引言

2 相关工作

3 方法

4 实验

5 其他方法的讨论

6 结论

本文提出了一种通过利用各种语言的知识来提高LLM多语言能力的方法,其中包括一个低资源知识检测器,一个选择语言的过程,以及答案替换和集成。我们的实验表明&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值