LangFair: A Python Package for Assessing Bias and Fairness in Large Language Model Use Cases

文章主要内容

  1. 背景与问题:传统机器学习公平性工具包不适用于大语言模型(LLMs)的生成性和上下文依赖特性,现有评估工具多在模型层面基于静态基准数据集评估LLMs,未考虑提示特定风险和实际任务,无法代表系统真实性能。
  2. LangFair介绍:开源Python包,采用“自带提示”(BYOP)方法,根据用户提供的提示计算指标,评估LLMs用例的偏差和公平性风险。
  3. 功能模块
    • 评估数据集生成ResponseGenerator类简化评估数据集生成;CounterfactualGenerator类用于检查通过无意识实现公平(FTU),构建反事实输入对并生成相应响应。
    • 偏差和公平性评估:根据评估风险(毒性、刻板印象、反事实不公平和分配性伤害)和用例任务(文本生成、分类和推荐)对评估指标进行分类,不同类提供相应指标计算方法。
    • 半自动化评估AutoEval类为文本生成用例提供多步骤综合公平性评估,包括指标选择、数据集生成和
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值