文章主要内容与创新点总结
一、主要内容
本文聚焦大型语言模型(LLMs)与人类大脑在句法结构表征上的关联性研究,提出了层级频率标记探针(HFTP)这一统一分析框架,通过频域分析技术,系统探究了LLMs的神经元模块与人类大脑皮层区域对句法结构(句子、短语层级)的编码机制。
- 研究对象与数据:选取GPT-2、Gemma、Gemma 2、Llama 2、Llama 3.1、GLM-4六种主流LLMs,采用中英双语语料(含受控句法语料与自然文本),结合26名汉语母语者的颅内立体脑电图(sEEG)数据,实现模型与大脑数据的跨系统对比。
- 核心发现:
- LLM层面:所有模型均存在专门编码句子和短语的MLP神经元,不同模型的句法处理策略存在差异(如GPT-2集中于中间层,Gemma倾向早期层,Llama和GLM侧重深层);模型升级呈现分歧趋势,Gemma 2与大脑的相似度高于Gemma,而Llama 3.1较Llama 2反而降低。
- 人类大脑层面:句法处理依赖左半球优势网络(STG、MTG、IFG等核心语言区域),句子和短语处理由不同脑区独立完成,呈现“短语通道随脑层升高减少、句子通道增多”的层级模式。
- 对齐分析:LLM表征与人类左半球(语言优势半球)的对齐度显著高于右半球,GPT-2的整体对齐表现最优;核心语言区域(左A1、STG、MTG、IFG)是模型与大脑句法表征对齐的关键脑区。
- 方法验证:HFTP可无缝扩展至
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



