Hierarchical Frequency Tagging Probe (HFTP): A Unified Approach to Investigate Syntactic Structure

文章主要内容与创新点总结

一、主要内容

本文聚焦大型语言模型(LLMs)与人类大脑在句法结构表征上的关联性研究,提出了层级频率标记探针(HFTP)这一统一分析框架,通过频域分析技术,系统探究了LLMs的神经元模块与人类大脑皮层区域对句法结构(句子、短语层级)的编码机制。

  1. 研究对象与数据:选取GPT-2、Gemma、Gemma 2、Llama 2、Llama 3.1、GLM-4六种主流LLMs,采用中英双语语料(含受控句法语料与自然文本),结合26名汉语母语者的颅内立体脑电图(sEEG)数据,实现模型与大脑数据的跨系统对比。
  2. 核心发现
    • LLM层面:所有模型均存在专门编码句子和短语的MLP神经元,不同模型的句法处理策略存在差异(如GPT-2集中于中间层,Gemma倾向早期层,Llama和GLM侧重深层);模型升级呈现分歧趋势,Gemma 2与大脑的相似度高于Gemma,而Llama 3.1较Llama 2反而降低。
    • 人类大脑层面:句法处理依赖左半球优势网络(STG、MTG、IFG等核心语言区域),句子和短语处理由不同脑区独立完成,呈现“短语通道随脑层升高减少、句子通道增多”的层级模式。
    • 对齐分析:LLM表征与人类左半球(语言优势半球)的对齐度显著高于右半球,GPT-2的整体对齐表现最优;核心语言区域(左A1、STG、MTG、IFG)是模型与大脑句法表征对齐的关键脑区。
  3. 方法验证:HFTP可无缝扩展至
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UnknownBody

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值