在OpenCV里使用Meanshift算法

该博客介绍了如何在OpenCV中应用Meanshift算法进行目标跟踪。文章通过直观解释算法原理,说明Meanshift如何寻找像素密度最大的区域,并通过不断迭代确定目标对象的位置。在OpenCV中,使用cv.meanShift函数完成这一过程,包括设置目标、计算直方图、反向投影图及调用meanShift函数。示例代码展示了Meanshift算法在跟踪物体时的效果。
摘要由CSDN通过智能技术生成

在这里将要学习Meanshift算法,这个算法主要在视频里寻找指定目标区域对象。Meanshift算法的原理在直觉上是很很简单的,假设有一张很点做成的图,如下图:

然后给你一个小的窗口,可以是圆形,也可以是方形,接着不断地移动这个窗口,尽量让这个窗口里的元素最多,也就是密度最大。在这里认为初始化的窗口为C1,蓝色那个圆,圆心是C1_O,蓝色那个方块表示。当你想找这个圆的质心时,你会发现它并不是在圆心位置,而是在C1_r位置,用蓝色圆表示。显而易见,圆心与质心并不一致,那么接着下来就是把这个圆的圆心移动到质心的位置,这时再去寻找新的质心,然后又发现它们并不匹配,又继续移动新的质心上。这样不断地迭代下去,发现总会有一个地方,圆心与质心是一致的。最后得到这个圆窗口,就是最像素分布密度最大的窗口。接着把密度最大的窗口标记为C2,从上图看到确实如此。

从上

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

caimouse

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值