【MATLAB例程】联邦卡尔曼滤波,主滤波与子滤波融合GPS、IMU、里程计多传感器数据。提供源代码下载链接

在这里插入图片描述

本程序实现标准结构的联邦卡尔曼滤波( F K F FKF FKF),融合 I M U + G N S S IMU+GNSS IMU+GNSS I M U + o d o m IMU+odom IMU+odom两个子滤波器,通过主滤波器统一估计二维位置、速度与加速度。系统考虑公共信息管理、信息加权融合及反馈机制,具备高精度和鲁棒性,适用于多传感器导航仿真。

程序介绍

本联邦卡尔曼滤波(Federated Kalman Filter)的MATLAB例程适用于多传感器融合系统。介绍如下:

系统架构

  • 主滤波器: 负责全局状态融合
  • G N S S GNSS GNSS子滤波器: 处理位置观测数据
  • IMU子滤波器: 处理加速度观测数据
  • 里程计子滤波器: 处理速度观测数据

代码结构

主程序部分:
├── 参数设置
├── 轨迹生成
├── 传感器数据生成  
├── 滤波器初始化
├── 主滤波循环
├── 结果分析
└── 扩展功能演示

函数定义部分:
├── generate_true_trajectory()
├── generate_sensor_data()
├── initialize_federated_filter()
├── run_federated_filter()
├── time_update()
├── measurement_update()
├── federated_fusion()
├── information_feedback()
├── analyze_results()
└── demo_adaptive_federated_filter()

运行结果

各方法得到的轨迹对比:
在这里插入图片描述

各方法得到的误差对比:
在这里插入图片描述

位置误差的分布柱状图:
在这里插入图片描述

命令行窗口输出的误差特性:
在这里插入图片描述

MATLAB源代码

代码结构:

在这里插入图片描述

部分代码如下:

%% 联邦卡尔曼滤波(Federated Kalman Filter)仿真例程,标准联邦架构,两个子滤波器 + 一个主滤波器
% 子滤波器1:IMU+GNSS
% 子滤波器2:IMU+odom
% 主滤波器:融合两个子滤波器的信息
% author:Evand(V:matlabfilter)
% 2025-08-05/Ver1

clear; clc; close all;
rng(0);

%% 系统参数设置
dt = 0.01;           % 采样时间 (s)
T_sim = 100;         % 仿真时间 (s)
N = T_sim / dt;     % 仿真步数

% 状态向量: [x, y, vx, vy, ax, ay]' (位置、速度、加速度)
n_states = 6;

% 系统噪声参数
process_noise_std = 0.1;  % 过程噪声标准差

% 传感器噪声参数
GNSS_noise_std = 5;       % GNSS位置噪声标准差 (m)
imu_noise_std = 0.1;     % IMU加速度噪声标准差 (m/s²)
odom_noise_std = 4;    % 里程计速度噪声标准差 (m/s)

fprintf('开始联邦卡尔曼滤波仿真...\n');

%% 生成真实轨迹
t = (0:N-1) * dt;
...

完整代码下载链接:https://download.csdn.net/download/callmeup/91597532

或:

如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB卡尔曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值