MATLAB定位与滤波例程
文章平均质量分 90
讲解动态目标下的定位方法和轨迹滤波,二维、三维环境下的定位与跟踪、MATLAB/octave下的代码
余额抵扣
助学金抵扣
还需支付
¥49.90
¥99.00
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
MATLAB卡尔曼
所有代码如运行有问题,可私信博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《MATLAB定位与滤波例程》专栏目录,持续更新……
本专栏针对动态目标定位时的轨迹滤波需求,给出TOA/AOA/RSSI、GNSS+INS松紧耦合等定位方法与EKF/UKF/CKF等滤波方法结合的matlab例程,弥补另一个专栏《MATLAB定位程序与详解》只提供静态、单点定位方法的缺陷。原创 2025-03-15 01:13:46 · 437 阅读 · 0 评论
-
MATLAB滤波定位代码:TDOA(到达时间差)与IMU(惯性测量单元)数据融合滤波,使用EKF作为滤波,与纯INS、纯TDOA的结果对比,适用于二维平面,TDOA锚点数量可自适应
基于TDOA(到达时间差)与IMU(惯性测量单元)数据融合的定位方法,采用EKF(扩展卡尔曼滤波)进行轨迹估计。二维平面下标准CV(常速度)模型。通过对比纯INS、纯TDOA和融合方法的结果表明,EKF融合方法显著提高了定位精度。支持自定义运动轨迹、锚点数量和噪声参数,为室内外定位系统提供了有效解决方案。原创 2026-02-19 10:59:15 · 96 阅读 · 0 评论 -
【MATLAB代码】UWB(TOA),与IMU使用扩展卡尔曼滤波的紧耦合,对目标轨迹定位并输出误差统计。适用于三维空间的高精度定位
基于扩展卡尔曼滤波(EKF)的UWB-IMU紧耦合三维定位算法。该方法融合高频IMU惯性数据和低频UWB测距数据,实现高精度的位置、速度和姿态估计原创 2026-02-15 11:07:08 · 155 阅读 · 0 评论 -
【UWB与IMU紧耦合定位】UWB的TOA定位方法,与IMU紧耦合,对目标轨迹定位并输出误差统计。适用于二维平面的高精度定位导航,附MATLAB代码
基于扩展卡尔曼滤波(EKF)的UWB与IMU紧耦合定位系统仿真框架。该系统在二维平面下运行,通过融合IMU的加速度、角速度信息与UWB的TOA测距数据实现精确定位。原创 2026-02-13 15:38:50 · 154 阅读 · 0 评论 -
【一维非线性EKF与RTS】MATLAB,用于一维的位移与速度滤波和RTS平滑/高精度定位,带滤波前后的误差对比。附MATLAB代码
非线性动态系统中扩展卡尔曼滤波(EKF)与RTS平滑算法的联合应用。通过MATLAB仿真对比分析,结果表明:RTS平滑能有效修正EKF前向滤波的估计误差,在位置和速度估计上均表现出更好的精度。原创 2026-01-21 10:08:26 · 126 阅读 · 0 评论 -
【MATLAB代码】雷达测距+测角的二维定位,基于CV运动的EKF和RTS平滑。滤波与平滑后的结果对比、误差分析。订阅专栏后可查看完整代码
基于二维平面雷达跟踪场景,采用EKF(扩展卡尔曼滤波)和RTS(Rauch-Tung-Striebel)平滑算法对匀速运动目标进行状态估计。仿真包含测距+测角观测,可调整雷达位置、目标轨迹和传感器噪声参数原创 2026-01-20 10:18:39 · 312 阅读 · 0 评论 -
【三维,UKF滤波】速度观测与IMU融合的demo,展示了INS与DVL的融合,三维环境、使用无迹卡尔曼滤波作为融合方法,附完整的MATLAB代码,订阅专栏后可直接查看
基于无迹卡尔曼滤波器(UKF)的三维惯性导航系统(INS)与多普勒计程仪(DVL)融合算法。采用UKF处理非线性运动模型和观测模型,以三维速度作为状态量。可直接运行,获得速度曲线、误差曲线和三维轨迹等可视化结果。原创 2026-01-13 10:29:22 · 160 阅读 · 0 评论 -
【滤波代码对比】MATLAB编写的INS+DVL滤波代码,EKF与UKF对比,适用于二维平面惯导与速度测量的数据融合。
为EKF与UKF在INS与DVL融合中的应用提供了一个完整的比较框架,通过模拟和图形化分析,帮助研究者理解两者在实际导航任务中的表现。原创 2026-01-05 17:05:28 · 433 阅读 · 0 评论 -
【二维,UKF,速度滤波】DVL与IMU的融合例程,模拟速度和惯导的融合,适用于二维平面、非线性的运动轨迹。订阅专栏后可直接查看代码
本代码利用UKF对二维速度进行估计,显著提高了系统在动态环境中的定位精度。通过生成sigma点、预测步骤、更新步骤,成功地融合了INS与DVL数据,并验证了滤波后的结果。原创 2026-01-03 20:29:33 · 195 阅读 · 0 评论 -
【MATLAB代码】三维环境下,EKF融合INS与DVL的核心程序,用于惯导和速度传感器的数据融合滤波。订阅专栏后可直接查看完整代码
基于扩展卡尔曼滤波(EKF)的INS与DVL融合仿真系统。非线性速度观测模型,三维空间载体速度估计。MATLAB仿真EKF融合原创 2026-01-03 20:27:58 · 69 阅读 · 0 评论 -
【MATLAB代码】二维环境,INS与DVL的融合,使用EKF(扩展卡尔曼滤波),基于非线性测速系统,附MATLAB代码
DVL,INS,EKF原创 2025-12-31 10:38:27 · 509 阅读 · 0 评论 -
【MATLAB代码】多频GNSS系统中,对不同频段的信号进行维纳滤波,满足高精度独立定位的需求,附完整的MATLAB代码
本文提出了一种基于维纳滤波的BDS多频信号处理方法,通过融合B1L和B3L频段观测数据,结合电离层延迟补偿,有效提升了GNSS定位精度。MATLAB仿真结果显示,该方法将原始观测误差从1.0-1.5米降低至0.3米左右,改善率达70%以上。实验验证了维纳滤波结合加权融合策略在抑制测量噪声和电离层延迟方面的有效性,并提供了完整的性能评估和三维轨迹可视化。该算法可直接应用于北斗等GNSS系统的精密定位场景。原创 2025-12-24 07:28:57 · 157 阅读 · 0 评论 -
【EKF定位滤波代码】3D空间中,非线性的速度与位置,观测与滤波(使用扩展卡尔曼滤波,EKF)。附MATLAB完整代码,订阅专栏后可查看
MATLAB实现扩展卡尔曼滤波(EKF),三维,强非线性系统示例,用于估计6维状态(位置+速度)。提供可直接运行的完整MATLAB源代码,便于复现实验结果和修改成想要的模型,有中文注释原创 2025-12-12 07:31:25 · 111 阅读 · 0 评论 -
【指纹定位与KF】基于KNN的指纹定位与卡尔曼滤波,用于二维平面下融合指纹定位结果和IMU数据,附完整MATLAB代码
本文提出了一种基于KNN指纹定位与IMU融合的二维高精度定位方法。通过建立指纹数据库,采用KNN算法进行初步定位,再与IMU测量数据通过卡尔曼滤波进行融合。实验结果表明,融合后的定位误差显著降低,平均误差为1.12m,相比单独使用指纹定位(2.87m)和IMU推算(5.63m)精度分别提高了61%和80%。该方法实现了稳定可靠的室内定位,MATLAB源代码可直接运行复现结果。原创代码禁止翻卖,完整实现细节可通过订阅专栏获取。原创 2025-12-02 09:44:58 · 162 阅读 · 0 评论 -
【MATLAB代码】三维雷达跟踪目标,并使用UKF(无迹卡尔曼滤波)对目标轨迹进行滤波。订阅专栏后可直接查看完整代码
本文提出了一种基于UKF的雷达与IMU数据融合算法,用于三维空间中的目标定位与导航。系统利用雷达观测距离、俯仰角和方位角,结合IMU的加速度和角速度数据,通过UKF滤波器估计目标的位置、速度和姿态(四元数)。仿真结果表明,该方法能有效融合多源传感器信息,相比纯IMU推算显著提高了定位精度。文中详细给出了MATLAB实现代码,包括状态预测、测量更新和四元数运算等关键步骤,并提供了轨迹对比和误差分析的可视化结果。该算法适用于无人机、机器人等需要高精度三维定位的场景。原创 2025-12-01 11:43:37 · 183 阅读 · 0 评论 -
【matlabfilter代码】二维平面的雷达测角测距定位,单一雷达,KF融合雷达和IMU数据。轨迹绘图、误差绘图输出。订阅专栏后可查看完整代码,包运行成功
原创代码,拒绝AI生成。未经允许,禁止翻卖。原创 2025-12-01 11:43:01 · 136 阅读 · 0 评论 -
【MATLAB代码】多雷达(数量1~n可自行设置)的雷达跟踪与滤波,二维平面环境,观测为角度和距离。滤波用UKF
本文提出了一种基于UKF(无迹卡尔曼滤波)的多雷达二维目标跟踪系统,采用匀速运动模型实现自适应雷达数量配置。系统输入为雷达观测数据(距离和方位角),输出为目标状态估计(位置和速度)。仿真结果显示,系统能有效处理1个或5个雷达的观测数据,实现稳定跟踪。程序结构包括参数配置、UKF初始化、仿真数据生成和多雷达数据融合处理。关键参数如采样周期、雷达位置、测量噪声和过程噪声均可调整,适用于不同场景需求。代码提供完整MATLAB实现,支持直接运行和结果可视化。原创 2025-11-21 10:26:23 · 126 阅读 · 0 评论 -
【MATLAB代码】三个雷达、三维空间上的目标跟踪,与UKF滤波,观测为斜距、俯仰角、方位角。订阅专栏后可查看完整代码
摘要: 本文提出一种基于UKF(无迹卡尔曼滤波)的三维多雷达目标跟踪方法,实现匀速运动目标的三维轨迹估计。系统通过融合多个雷达的斜距、俯仰角和方位角观测数据,结合目标运动模型进行状态预测与更新。MATLAB仿真结果显示,该方法能有效跟踪目标三维轨迹,并提供误差分析曲线。代码支持自定义雷达数量、位置及噪声参数,包含完整的UKF实现流程,可直接运行验证算法性能。原创 2025-11-15 10:59:29 · 185 阅读 · 0 评论 -
【MATLAB代码】二维平面上,三个雷达对一个目标跟踪,输出观测平均与UKF滤波两种算法的结果对比。订阅专栏后可直接查看完整代码
摘要:该研究对比了二维平面上三雷达对目标的跟踪效果,使用观测平均法与UKF(无迹卡尔曼滤波)算法进行轨迹估计。结果显示UKF算法在位置和速度估计上均优于传统方法,提供了更平滑的轨迹和更小的误差。MATLAB代码实现了完整的仿真系统,包括轨迹生成、UKF滤波以及误差统计分析。实验数据表明,UKF在位置误差上降低了70%,且能有效估计目标速度(非滤波方法无法获取)。该研究为雷达目标跟踪提供了实用解决方案,代码可直接运行验证结果。原创 2025-11-11 09:52:41 · 524 阅读 · 0 评论 -
【MATLAB代码】2雷达二维目标跟踪滤波系统-UKF(无迹卡尔曼滤波)实现,目标匀速运动模型(带扰动)。订阅专栏后可查看完整代码
本文基于MATLAB实现了二维平面上双雷达目标跟踪的UKF滤波算法。系统采用匀速运动模型,通过雷达观测的距离和方位角数据进行目标状态估计。仿真结果表明,UKF滤波相比单纯的雷达观测显著提高了定位精度,位置误差标准差分别降低了47.45%和65.83%。程序输出包含真实轨迹、观测数据、滤波估计结果对比图,以及位置误差、速度误差和统计特性分析。该代码可直接在MATLAB R2016b及以上版本运行,适合目标跟踪算法的研究和验证。原创 2025-11-10 10:29:07 · 264 阅读 · 0 评论 -
【MATLAB代码】二维平面,三个雷达跟踪一个目标的程序,直接观测和EKF滤波后的轨迹对比
本文提出了一种基于扩展卡尔曼滤波(EKF)的多雷达目标跟踪系统,实现了二维平面内机动目标的实时状态估计。系统采用匀速运动模型(CV Model),通过融合多个雷达的距离-方位角观测数据,完成对目标位置和速度的高精度跟踪。仿真实验展示了真实轨迹、EKF估计轨迹和观测数据的对比结果,并分析了位置和速度误差曲线。系统支持配置雷达数量、采样周期、噪声参数等关键参数,具有良好的适应性和扩展性。MATLAB源代码可直接运行,为多传感器数据融合和目标跟踪研究提供参考实现。原创 2025-11-08 13:50:19 · 184 阅读 · 0 评论 -
【雷达跟踪滤波代码】多个雷达(数量自适应)的三维目标跟踪滤波系统,目标匀速运动,EKF|观测为(斜距、俯仰角、方位角)。订阅专栏后可查看完整的MATLAB代码
本文介绍了一个基于EKF的多雷达三维目标跟踪系统,能够在测量噪声和过程噪声干扰下实现对目标位置、速度及角速度的融合估计。系统采用混合运动模型,支持自定义雷达数量和位置配置,并提供了完整的MATLAB实现代码。仿真结果表明,该系统能有效跟踪目标运动轨迹,误差曲线显示位置和速度估计精度良好。程序结构清晰,可直接运行并可视化跟踪结果,适用于多雷达协同目标跟踪算法的研究与应用。原创 2025-11-03 10:08:18 · 363 阅读 · 0 评论 -
MATLABcode|2个雷达二维目标跟踪滤波系统 - EKF实现,匀速运动模型,输入:雷达观测数据(距离、方位角),输出:目标状态估计(位置、速度)
本文介绍了一种基于扩展卡尔曼滤波(EKF)的多雷达目标跟踪系统实现。该系统采用匀速运动模型(CV),通过MATLAB代码实现了对二维空间目标的跟踪滤波。主要特点包括:灵活配置雷达位置及参数,真实仿真目标轨迹和噪声环境,支持多雷达数据融合。仿真结果显示,EKF算法能有效跟踪目标,位置误差在可接受范围内(约30m)。该实现既可作为雷达跟踪研究的工程框架,也是学习EKF算法的典型案例。用户可通过修改配置参数(如采样周期、噪声水平等)进行性能测试和算法改进。原创 2025-10-31 10:00:14 · 168 阅读 · 0 评论 -
【雷达跟踪滤波代码】3个雷达的三维目标跟踪滤波系统,目标匀速运动,EKF滤波|雷达观测为(斜距、俯仰角、方位角)。附MATLAB代码,订阅专栏后可查看
本文介绍了一个基于扩展卡尔曼滤波(EKF)的多雷达三维目标跟踪系统。该系统通过融合多个雷达的观测数据(斜距、俯仰角、方位角),实现对空中目标的高精度位置和速度估计。文章详细说明了系统配置参数、EKF初始化过程、混合运动模型设计以及多雷达数据融合方法。仿真结果显示,该系统能有效跟踪目标三维轨迹,并提供了轨迹对比图、误差分量分析和命令行误差统计等可视化结果。MATLAB源代码可直接运行,适用于匀速直线运动场景的三维目标跟踪任务。原创 2025-10-30 10:11:03 · 379 阅读 · 0 评论 -
【MATLAB代码】AOA(到达角度)定位,二维平面下N个锚点定位(自适应基站数量),动态轨迹使用EKF滤波优化。附完整代码,订阅专栏后可查看
摘要 本文提出了一种基于到达角(AOA)定位与扩展卡尔曼滤波(EKF)相结合的二维目标追踪方法。通过多个基站的角度测量信息实现对移动目标的高精度定位,并利用动态运动模型进行轨迹平滑处理。系统采用自适应基站数量调整,无需调节矩阵形式,提高了算法的灵活性和实用性。MATLAB仿真结果显示,该方法能有效降低定位误差,EKF滤波后的轨迹精度显著优于未滤波结果。实验数据包括定位示意图、XY轴误差曲线和距离误差曲线,验证了该方案在二维目标追踪中的有效性。原创 2025-10-18 14:35:54 · 196 阅读 · 0 评论 -
【目标跟踪n雷达二维EKF】雷达对单目标跟踪,滤波(使用扩展卡尔曼)增强定位能力,二维,目标状态未知,雷达数量可调。给出MATLAB代码
该文章研究了一种基于多雷达观测的目标跟踪算法,采用EKF(无迹卡尔曼滤波)提高二维平面目标的定位精度。系统通过匀速运动模型和雷达观测建模,实现了完整的EKF滤波过程。实验结果表明,EKF滤波能有效减小位置误差,提高速度估计精度。雷达数量可自由调节,代码可直接在MATLAB中运行,输出包括轨迹对比、误差曲线和统计特性分析。该算法适用于多传感器数据融合场景,具有较好的鲁棒性和实用性。原创 2025-10-14 10:38:00 · 550 阅读 · 0 评论 -
组合导航的MATLAB代码,二维平面上的CKF滤波,融合IMU和GNSS数据,仿真,观测为X和Y轴的坐标,附完整代码
本文提出了一种基于8维状态模型的平面运动估计算法,采用容积卡尔曼滤波器(CKF)融合IMU和GNSS数据。算法建立了包含位置、速度、姿态和传感器偏差的完整状态空间模型,利用CKF处理非线性问题,相比传统EKF具有更好的数值稳定性和精度。仿真结果表明,该方法能有效结合IMU的高频更新特性和GNSS的绝对定位优势,显著提高了轨迹估计精度。MATLAB实现验证了算法的有效性,位置误差控制在3米以内,速度误差优于0.1m/s,充分体现了多传感器融合的互补优势。原创 2025-09-26 09:56:28 · 119 阅读 · 0 评论 -
【组合导航代码】三维空间,CKF(容积卡尔曼滤波),融合IMU+GNSS数据,观测为XYZ三轴的坐标|MATLAB仿真|附完整的代码,可粘贴后直接运行
本文介绍了一个基于15维误差状态模型的容积卡尔曼滤波器(CKF)实现,用于三维组合导航。系统状态包括位置、速度、姿态、陀螺偏差和加速度计偏差,观测量为GNSS位置数据。文章提供了完整的MATLAB源代码,可模拟螺旋上升运动轨迹并进行导航解算。结果表明,CKF能有效融合IMU和GNSS数据,相比纯IMU积分显著提高了导航精度。程序输出包括三维轨迹图、速度/位置对比曲线、距离误差曲线和性能统计,展示了CKF在组合导航中的优越性能。该实现可直接运行,为研究组合导航算法提供了实用参考。原创 2025-09-25 10:09:29 · 358 阅读 · 0 评论 -
【USBL】超短基线,与DVL、IMU的数据融合,使用扩展卡尔曼滤波,提供MATLAB代码,粘贴到MATLAB脚本上可直接运行
摘要:本文提出了一种基于EKF的USBL、DVL和IMU多传感器融合定位算法,通过MATLAB仿真验证了该方法的有效性。研究实现了三维水下目标定位,比较了四种方案:1)USBL+DVL+IMU融合;2)仅USBL观测;3)仅DVL推算;4)仅IMU推算。仿真结果显示,多传感器融合方案显著提高了定位精度,其中融合方案的位置误差最小(约1.5m),而单独使用IMU的方案误差最大(随时间累积超过100m)。算法考虑了传感器噪声特性和IMU偏差,提供了完整的MATLAB源代码,可直接运行复现结果。原创 2025-09-23 13:40:47 · 444 阅读 · 0 评论 -
【MATLAB代码】USBL(超短基线)与DVL(Doppler Velocity Log,多普勒速度计)对水下物体三维定位,附完整代码
摘要: 本文基于扩展卡尔曼滤波(EKF)实现了USBL(超短基线)与DVL(多普勒速度计)的水下目标三维定位数据融合。通过仿真螺旋上升轨迹,对比分析了仅USBL几何解算、仅DVL速度推算及两者融合的定位效果。结果显示,融合方法显著降低了位置误差(均方根误差约1.5m),优于单一传感器(USBL误差3m,DVL累积误差大)。MATLAB源码提供完整实现,包含噪声建模、EKF滤波及三维轨迹可视化,验证了多源数据融合对提升水下定位精度的有效性。原创 2025-09-22 10:09:02 · 986 阅读 · 0 评论 -
USBL与IMU融合的导航程序,MATLAB编写的仿真例程,(超短基线与惯导结合,用扩展卡尔曼滤波做融合)附完整代码
该MATLAB代码实现了基于USBL(超短基线)与IMU(惯性测量单元)融合的导航系统仿真。通过EKF(扩展卡尔曼滤波)算法,将USBL的方位角、俯仰角和距离观测与IMU的加速度和角速度数据进行融合,显著提高了定位精度。仿真结果显示,融合后的轨迹误差(RMSE: 1.21m)远低于纯USBL观测(5.67m)和纯IMU推算(15.38m)的误差。代码提供了完整的轨迹对比图、三轴位移曲线和误差分析,可直接运行生成结果。原创 2025-09-22 10:04:46 · 253 阅读 · 0 评论 -
【EKF组合导航代码153】MATLAB代码,15维状态量、3维观测量的组合导航,滤波使用EKF。附完整代码,可直接复制
该摘要介绍了基于15维误差状态模型的扩展卡尔曼滤波(EKF)组合导航算法实现。系统状态包括位置(3)、速度(3)、姿态(3)、陀螺偏差(3)和加速度计偏差(3),观测量为三维位置。代码生成螺旋上升轨迹进行仿真,对比了纯IMU积分和EKF融合结果,展示了三维轨迹、速度、位置和姿态的估计效果,以及误差对比曲线。MATLAB源代码可直接运行,包含完整的噪声参数设置、状态初始化、轨迹生成和EKF滤波实现。原创 2025-09-19 09:46:40 · 209 阅读 · 0 评论 -
【MATLAB代码】超短基线(USBL)基于方位角、距离测量,给水下的目标进行三维定位。附完整代码,订阅专栏后可直接查看
本文介绍了一种基于方位角与距离测量的水下目标定位仿真方法。系统通过USBL传感器测量目标的方位角、俯仰角和斜距,并转换为三维笛卡尔坐标进行定位。仿真采用螺旋下降轨迹,考虑了高斯噪声对测量值的影响(方位角/俯仰角噪声1°,测距噪声0.5m)。结果显示,该方法能有效跟踪目标运动,定位误差在合理范围内。MATLAB源代码提供了完整的仿真实现,包括轨迹生成、坐标转换和误差分析模块,可直接运行验证定位性能。原创 2025-09-17 09:48:20 · 589 阅读 · 0 评论 -
【MATLAB代码】地磁与IMU融合导航,使用EKF,对比真值、地磁、纯惯导INS、EKF融合后的结果,附完整代码|订阅专栏后可查看
本文实现了一套基于地磁特征匹配的室内定位系统,通过扩展卡尔曼滤波器(EKF)融合地磁观测数据与IMU惯性测量数据。系统首先生成仿真地磁地图和圆形运动轨迹,利用地磁匹配算法进行独立定位,再结合IMU加速度信息进行EKF松组合滤波。实验结果表明,该方法能有效提高定位精度,融合后误差显著降低。MATLAB源代码可直接运行,包含轨迹对比、误差分析等可视化结果,适用于室内定位研究。原创 2025-09-17 09:47:18 · 916 阅读 · 0 评论 -
【MATLAB代码】UKF组合导航例程,15维状态量、3维观测量。附完整的代码,有中文注释、误差输出图像
摘要 本文提出了一种基于15维误差状态模型的UKF组合导航算法,实现了三维位置、速度和姿态的高精度估计。算法采用严格的误差状态模型,包含位置(3)、速度(3)、姿态(3)、陀螺偏差(3)和加速度计偏差(3)共15个状态量,通过3维GNSS位置观测进行校正。仿真结果表明,相比纯IMU积分,UKF算法能有效抑制误差积累,显著提高导航精度。文中提供了完整的MATLAB源代码,可直接运行并复现三维轨迹对比、位置/速度曲线及误差分析结果。原创 2025-09-12 10:06:30 · 262 阅读 · 0 评论 -
【matlab代码】基于CKF的组合导航,三维空间中融合GNSS与IMU,观测为三轴位置与速度,状态量15维,订阅专栏后可查看完整的MATLAB代码
本文介绍了一种基于15维误差状态模型的组合导航仿真方法,采用容积卡尔曼滤波器(CKF)进行非线性滤波。系统状态包括位置、速度、姿态、陀螺偏差和加速度计偏差,观测模型为6维GNSS数据(位置+速度)。仿真结果表明,CKF能有效融合IMU和GNSS数据,显著提高导航精度。与纯IMU积分相比,CKF估计的位置误差降低约85%,速度误差降低约90%。该方法适用于高精度导航系统,提供完整的MATLAB源代码可直接运行。原创 2025-09-11 10:12:11 · 99 阅读 · 0 评论 -
【MATLAB组合导航代码,平面】CKF(容积卡尔曼滤波)作为融合方法,状态量8维,观测量4维,包含二维平面上的严格的INS推导。附完整代码
本文介绍了一种基于8维误差状态模型的容积卡尔曼滤波器(CKF)实现,用于三维组合导航系统。该模型包含位置(2)、速度(2)、航向角、航向偏差(1)和加速度计偏差(2)状态量,采用4维观测(XY位置+XY速度)。仿真结果表明,CKF能有效融合IMU和GNSS数据,相比纯IMU积分显著提高了导航精度。MATLAB源代码可直接运行,展示了轨迹、速度及误差曲线对比,验证了算法在圆形运动轨迹下的性能。该系统适用于需要高精度定位的场景,如无人机、自动驾驶等。原创 2025-09-08 10:13:50 · 258 阅读 · 0 评论 -
【MATLAB代码】平面上的组合导航例程,使用EKF融合IMU和GNSS数据,8维状态量和2维观测量,附完整的代码
本文提出了一种基于8维状态量(位置、速度、航向角、角速度、加速度)和2维观测量(XY位置)的扩展卡尔曼滤波(EKF)算法。该算法通过融合IMU惯性测量和GNSS位置观测数据,实现了对运动轨迹的精确估计。仿真结果显示,相比纯IMU积分,EKF算法能有效抑制误差积累,提高定位精度。MATLAB源代码提供了完整的实现过程,包括状态预测、观测更新和误差分析,可直接运行验证。轨迹对比图和误差曲线表明,该EKF算法在二维导航中具有良好性能。原创 2025-09-05 10:07:31 · 219 阅读 · 0 评论 -
【MATLAB代码】UKF(无迹卡尔曼滤波)的组合导航,状态量为平面8维,观测量为XY坐标。附完整代码,有中文注释
本文介绍了一个基于无迹卡尔曼滤波器(UKF)的二维组合导航系统,该系统融合IMU和GNSS数据进行导航定位。主要内容包括:1) 系统采用8维误差状态模型,包含位置、速度、姿态及传感器偏差;2) 详细推导了噪声参数设置和协方差矩阵初始化;3) 通过圆形轨迹仿真验证算法性能,对比了纯IMU积分和UKF融合结果;4) 提供了完整的MATLAB实现代码,包含UKF预测和更新步骤。仿真结果表明,UKF能有效融合多源传感器数据,显著提高导航精度。原创 2025-09-03 14:34:27 · 336 阅读 · 0 评论 -
【MATLAB代码】三维状态量的组合导航仿真(UKF用来滤波,带推导)基于15维误差状态模型:位置(3)、速度(3)、姿态(3)、陀螺偏差(3)、加速度计偏差(3),观测量6维
本文介绍了一个基于15维误差状态模型的三维UKF组合导航算法实现。该模型包含位置(3)、速度(3)、姿态(3)、陀螺偏差(3)和加速度计偏差(3)状态量。通过MATLAB仿真生成了螺旋上升运动轨迹,分别进行了纯IMU积分和UKF估计的对比分析。仿真结果显示,UKF算法能有效融合IMU和GNSS观测数据,显著提高导航精度。文中提供了完整的MATLAB源代码,包括系统参数设置、噪声模型构建、轨迹生成、IMU积分和UKF实现等关键模块,可直接运行获得三轴轨迹对比、位置速度误差曲线等可视化结果。该实现采用严格的误差原创 2025-09-03 14:32:02 · 725 阅读 · 0 评论
分享