课题推荐与讲解
文章平均质量分 87
MATLAB卡尔曼
所有代码如运行有问题,可私信博主
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MATLAB课题介绍:基于定位结果的在线路径更新,附例程演示
基于定位结果的移动机器人在线路径更新方法,通过扩展卡尔曼滤波(EKF)实时估计机器人位置,结合A*算法实现动态路径规划原创 2026-01-29 13:26:06 · 389 阅读 · 0 评论 -
【2026课题介绍】创新性自适应卡尔曼滤波在经济与金融预测中的应用
创新型卡尔曼滤波,自适应卡尔曼滤波,预测经济,金融应用原创 2026-01-27 09:51:07 · 689 阅读 · 0 评论 -
【2026课题介绍】创新性自适应卡尔曼滤波在GNSS+INS滤波中的应用,可用于对现有EKF、UKF、CKF等应用的改进
全球导航卫星系统(GNSS)与惯性导航系统(INS)组合导航是当前高精度、高可靠导航定位领域的主流技术路线。GNSS能够提供长期稳定、无漂移的位置与速度信息,但在复杂环境下易受遮挡、多路径和干扰影响;INS则具备完全自主、短期精度高和高更新率等优势,但其误差随时间快速累积。通过卡尔曼滤波框架对GNSS与INS进行信息融合,可以充分发挥两类系统的互补特性,从而实现连续、稳定且高精度的导航解算。原创 2026-01-22 12:20:48 · 728 阅读 · 0 评论 -
【2026课题推荐】DOA定位——MUSIC算法进行多传感器协同目标定位。附MATLAB例程运行结果
基于多传感器协同的DOA定位技术,采用MUSIC算法实现信号到达方向估计,并通过多传感器数据融合提高定位精度。研究结果验证了该方法的有效性,同时提出了算法改进、系统优化和实际应用等扩展方向,为导航定位系统开发提供了技术参考。原创 2026-01-12 10:21:41 · 1103 阅读 · 0 评论 -
【MATLAB代码分享】GNSS观测与预定轨迹的滤波,三维环境下的高精度定位。附代码的运行结果。预定轨迹自动辨识
卡尔曼滤波融合GNSS观测数据,实现高精度定位。算法通过多源信息融合,在保持GNSS连续性的同时利用轨迹约束提高精度。可为复杂环境下的定位问题提供解决方案。原创 2026-01-10 16:43:18 · 878 阅读 · 0 评论 -
【课题推荐】基于超分辨率技术的低功耗定位系统|低功耗物联网|信号处理。附MATLAB运行结果
在低功耗物联网与边缘智能快速发展的背景下,定位系统正面临“高精度—低功耗—低成本”之间的长期矛盾。传统高精度定位方法通常依赖高采样率、高带宽或多传感器冗余设计,导致系统功耗和硬件复杂度显著上升,难以直接部署在大规模、长时工作的终端节点中。本课题从信号与信息处理角度出发,引入超分辨率(Super-Resolution, SR)技术,在不增加硬件资源或仅使用低分辨率、低采样率观测的条件下,实现定位精度的显著提升,为低功耗定位系统提供新的技术路径。原创 2026-01-10 16:05:53 · 695 阅读 · 0 评论 -
【2026课题推荐】基于阵列信号模型的动态 DOA 估计与自适应波束形成机理研究
从信号到达角(DOA)的物理定义出发,探讨其在阵列信号处理中的核心作用。针对多源信号环境下DOA测量存在的噪声、异常值等问题,比较了MVDR、LCMV和特征子空间三种波束形成方法的性能差异。MATLAB仿真结果演示原创 2026-01-08 11:11:12 · 630 阅读 · 0 评论 -
【课题推荐】基于UAV辅助的UGV高精度协同定位技术研究,附MATLAB例程运行的典型结果
空地协同,定位与滤波原创 2026-01-07 10:15:17 · 708 阅读 · 0 评论 -
【课题推荐】基于群体智能的定位系统优化——多机器人协同定位,通过群体智能优化路径规划与误差修正
本文研究了多机器人协同定位与群体路径规划技术。系统采用分布式协同定位机制,结合扩展卡尔曼滤波(EKF)进行状态估计,并通过粒子群优化(PSO)算法优化路径规划。实验结果表明,该方法能有效降低定位误差,提高路径规划效率。未来优化方向包括参数自适应调整、多传感器融合和分层架构设计。MATLAB仿真验证了算法的有效性。原创 2026-01-06 10:14:36 · 749 阅读 · 0 评论 -
【2026课题推荐】复杂环境下,无人车协同定位与路径规划算法(附MATLAB例程演示)
摘要:本文研究复杂环境下无人车协同定位与路径规划问题,提出融合EKF协同定位和多车路径规划的解决方案。系统采用扩展卡尔曼滤波融合GNSS/IMU数据,通过车辆间相对测距提升定位精度;路径规划模块结合改进A算法和动态窗口法实现全局规划与局部避障。MATLAB仿真验证了多车协同定位和动态避障的有效性,关键算法包括卡尔曼滤波、A搜索和碰撞检测等。实验结果显示系统能有效处理GNSS干扰和IMU漂移问题,实现多车协同定位与无碰撞路径规划。原创 2026-01-05 16:46:08 · 1380 阅读 · 0 评论 -
【2026课题介绍】基于小波变换的信号去噪与突变点检测技术在智能传感与故障诊断中的应用,附MATLAB例程的参考结果
小波变换 去噪 突变点检测原创 2025-12-31 08:48:35 · 661 阅读 · 0 评论 -
【2026课题推荐】基于累计概率方法匹配轨迹的飞行目标轨迹定位,附MATLAB代码的演示效果
本文提出了一种基于累计概率方法的飞行目标轨迹匹配算法,旨在提高动态环境下的定位精度。研究通过计算多条可能轨迹的累计概率,选择最优匹配轨迹来实现精确定位。方法结合目标状态信息进行概率更新,并利用MATLAB仿真验证算法性能。仿真结果显示,该方法能有效从带噪声观测数据中识别真实轨迹(黑色实线),优于传统最小均方误差方法。蓝色点线表示算法选择的最优匹配轨迹,红色虚线为含噪声的观测轨迹。该研究为导航与定位领域提供了新的优化思路,相关代码可定制开发。原创 2025-12-30 08:22:13 · 455 阅读 · 0 评论 -
【2026课题推荐】针对真实水下定位系统的误差特性,鲁棒性布局定位与协同路径规划、导航
关于真实水下定位系统的测距、测角等观测量的误差特性,基于鲁棒性布局定位锚点,结合节点间的协同来进行路径规划、导航,给出课题推荐原创 2025-12-29 09:48:59 · 935 阅读 · 0 评论 -
【2026课题推荐】GNSS拒止环境,协同导航算法与传感器布局的联合设计
GNSS拒止环境下多智能体协同导航,融合IMU和相对测距的分布式定位算法及传感器布局优化方案。基于EKF框架设计了预测-更新机制,利用Fisher信息矩阵优化锚点配置,并通过MATLAB仿真验证了算法有效性原创 2025-12-27 07:58:03 · 620 阅读 · 0 评论 -
【2026课题介绍】无人机集群时间与角度约束下的协同攻击算法,附代码例程的运行示例
本文探讨了无人机协同攻击系统的关键技术,提出了基于时间同步和角度约束的多机协同解决方案。研究聚焦四个核心挑战:时间协同、角度约束、路径规划和协同控制,采用Dubins路径和贝塞尔曲线生成平滑轨迹,通过速度调整实现同时到达。MATLAB仿真验证了算法有效性,展示了不同攻击角度的协同效果。文章还提出了可扩展方向,包括障碍规避、动态目标跟踪等。该研究为无人机集群作战提供了实用算法框架和技术参考。原创 2025-12-26 07:02:28 · 600 阅读 · 0 评论 -
【2026课题推荐】基于小波/互相关/FFT的卡尔曼滤波的轨迹估计,及MATLAB例程的运行结果
本文介绍了导航与定位领域的前沿研究课题,重点对比了多种信号处理方法及其在轨迹估计中的应用。小波变换适用于非平稳信号处理,FFT用于频域分析,互相关可实现多传感器数据匹配,而卡尔曼滤波则提供最优递归状态估计。文章还展示了MATLAB仿真结果,验证了这些方法在轨迹跟踪中的综合应用效果,包括信号预处理、特征提取和状态估计等关键环节。最后提供了不同方法的适用场景对比表,为相关研究选题提供了参考依据。原创 2025-12-20 15:57:27 · 957 阅读 · 0 评论 -
【课题推荐】基于视觉(像素坐标)与 IMU 的目标/自身运动估计(Visual-Inertial Odometry, VIO),课题介绍与算法示例
本文提出基于视觉-IMU融合的运动估计方法,结合图像特征和惯性测量数据实现精准定位。研究采用扩展卡尔曼滤波(EKF)融合高频IMU数据(加速度/角速度)与低频视觉数据(特征点坐标),通过坐标变换、误差动力学建模和时间戳对齐实现传感器数据融合。MATLAB实现包含运动模型积分、旋转矩阵计算和状态估计等模块,可视化结果展示了三维轨迹估计效果。该方案适用于无人驾驶、机器人导航等领域,可通过引入GPS或优化算法进一步提升精度。研究为多传感器融合定位提供了可行解决方案和技术参考。原创 2025-12-20 15:55:47 · 916 阅读 · 0 评论 -
【2025-2026课题推荐】Rao 检测 + 自适应噪声估计的滤波(AEKF/Sage-Husa)
Rao检测,SageHusa自适应的推荐方向原创 2025-12-19 07:48:59 · 846 阅读 · 0 评论 -
【2025~2026课题推荐】多锚点RSSI定位,遍历不同的锚点组合,基于定位误差,自动选择最佳精度的锚点星座,方法介绍与讲解
多锚点RSSI定位,通过遍历不同的锚点组合,计算定位误差,自动选择最佳精度的锚点星座原创 2025-12-18 07:43:06 · 1355 阅读 · 0 评论 -
【2025~2026课题推荐】跟踪突变状态,且初值降敏的强跟踪容积卡尔曼滤波(强跟踪容积卡尔曼滤波器)
本文提出一种基于强跟踪容积卡尔曼滤波(ST-CKF)的机动目标跟踪方法,针对传统滤波算法在初始状态偏离、目标机动突变时的性能不足问题。该方法通过自适应渐消因子调整预测协方差,增强对初值偏差的鲁棒性,并设计了基于新息序列的在线调优机制。实验结果表明,相比EKF、UKF等算法,ST-CKF在位置误差(RMSE)和收敛速度方面表现更优,尤其在目标机动时刻能保持更稳定的跟踪性能。创新点包括理论框架构建、初值降敏机制和多重渐消因子策略设计,为复杂环境下的目标跟踪提供了新思路。原创 2025-12-17 07:27:15 · 1226 阅读 · 0 评论 -
【信号处理课题推荐】小波变化:原理、演进与时频分析应用,MATLAB代码示例
小波变换,理论与应用。文章阐述了小波变换的数学原理、多分辨率特性,并通过MATLAB示例展示了其优势。小波变换在信号处理、图像压缩等领域具有广泛应用,未来发展方向包括自适应小波基优化、与深度学习结合等。小波变换为非平稳信号分析提供了有效工具,将持续推动相关领域的发展。原创 2025-12-11 07:38:23 · 1018 阅读 · 0 评论 -
【MATLAB例程】二维平面上,三个雷达对一个目标跟踪,输出观测平均与UKF滤波两种算法的结果对比,附下载链接
本文介绍了一种基于无迹卡尔曼滤波(UKF)的多雷达二维目标跟踪系统。该系统利用三台固定雷达对匀速运动目标进行距离和方位角联合测量,通过非线性滤波实现对目标位置与速度的高精度估计。程序主要包含目标轨迹仿真、多雷达观测模拟、UKF滤波估计和数据融合功能,采用Sigma点变换实现非线性状态更新。系统输出包括轨迹对比图、误差曲线、协方差变化图等可视化结果,并提供位置与速度的RMSE等统计指标。仿真结果显示UKF相比观测均值方法显著提高了跟踪精度。系统采用序贯观测更新方式融合多雷达信息,适用于匀速运动模型,参数可灵活原创 2025-11-12 10:44:14 · 1255 阅读 · 0 评论 -
【MATLAB例程】二维非线性系统的自适应粒子滤波(APF),基于SageHusa原理,与标准PF、未滤波值进行对比|附代码下载链接
本文提出了一种基于Sage-Husa自适应机制的自适应粒子滤波算法(APF),用于非线性系统的状态估计。该算法融合了传统粒子滤波的蒙特卡洛模拟优势与实时噪声参数调整能力,解决了系统噪声特性未知或时变的挑战。核心创新在于采用双重滤波架构(标准PF与自适应PF对比),通过Sage-Husa机制动态调整过程噪声(Q_sh)和观测噪声(R_sh),并引入0.95遗忘因子平衡历史信息权重。实验结果表明,该算法在非线性状态空间模型中表现优异,通过重要性采样、权重计算和系统重采样等关键技术,有效提升了估计精度。全面的性能原创 2025-11-01 10:09:42 · 825 阅读 · 0 评论 -
【课题推荐】卡尔曼滤波,创新性的算法与应用:从非线性适用性、鲁棒抗差、自适应、金融与生物新应用等方面考虑
本文系统梳理了卡尔曼滤波的创新发展与应用。算法层面,出现了EKF、UKF、CKF等非线性滤波扩展,以及鲁棒自适应滤波、分布式协同滤波等改进方法。应用层面,卡尔曼滤波已广泛应用于自动驾驶多传感器融合、无人机编队导航、结构健康监测和金融预测等领域。当前创新主要体现在算法优化、多学科融合及跨领域应用拓展,推动着导航定位、智能控制等技术的发展。原创 2025-08-07 09:53:11 · 1656 阅读 · 0 评论 -
课题推荐——扩展卡尔曼滤波(EKF)估计pmsm的位置误差
扩展卡尔曼滤波(EKF)是一种广泛应用于非线性系统状态估计的方法,尤其在永磁同步电机(PMSM)的位置和速度估计中表现出色。EKF通过实时估计转子位置误差,提升了控制精度。文章详细介绍了PMSM的状态空间模型及其非线性状态方程,并推导了离散化后的状态方程。EKF的实现步骤包括初始化、预测和更新,其中预测步骤利用雅可比矩阵进行状态和协方差的预测,更新步骤则通过卡尔曼增益调整状态估计。文章还探讨了噪声协方差矩阵的调整、初始化敏感性以及数值稳定性等调试与优化问题,并通过仿真和实验验证了EKF的性能。原创 2025-05-19 21:44:39 · 1087 阅读 · 0 评论 -
【MATLAB例程】声线跟踪|假设已经有声源的信号,程序通过麦克风阵列来估计声源的方向
声线跟踪(Sound Localization)是通过分析声音信号确定声源位置的技术,广泛应用于声学、机器人和自动驾驶等领域。其基本原理包括信号接收、信号处理和位置估计。关键公式涉及时延差(TDOA)、到达角(DOA)和位置估计。本文提供了一个MATLAB代码示例,模拟声源信号并通过麦克风阵列估计声源方向。代码包括参数设置、信号生成、时间延迟计算、互相关分析和方向估计,并绘制了互相关图。实际应用中需考虑噪声和复杂算法。原创 2025-05-15 10:17:02 · 1035 阅读 · 0 评论 -
课题介绍:基于Voronoi的大语言模型零样本目标导航
本研究探讨了将大语言模型(LLMs)与Voronoi图结合,以解决零样本条件下的目标导航问题。大语言模型在自然语言处理和决策支持方面表现出色,但在物理环境导航中仍面临挑战。Voronoi图作为一种几何工具,能够有效划分空间并生成路径规划方案。研究目标包括利用大语言模型理解自然语言描述的目标位置,结合Voronoi图生成最优路径,并在零样本条件下实现高效导航。技术路线涉及环境建模、语言推理、路径规划和仿真实验。应用场景涵盖自动驾驶、室内服务机器人和无人机路径规划。MATLAB例程展示了基于Voronoi图的路原创 2025-05-14 14:18:26 · 947 阅读 · 0 评论 -
课题推荐——低成本地磁导航入门,附公式推导和MATLAB例程运行演示
地磁导航是一种利用地球磁场特性进行定位和导航的技术,具有低成本、全天候和隐蔽性等优势,适用于室内外复杂环境。然而,地磁导航面临环境磁场变化、磁干扰和传感器噪声等挑战。本研究旨在开发一种基于地磁特征的低成本导航方法,包括地磁特征建模、定位与匹配算法设计以及抗干扰技术。通过采集环境磁场数据,建立地磁特征地图,并利用实时传感器数据进行匹配定位,结合卡尔曼滤波等算法提高导航精度。该技术有望在室内定位、机器人导航等领域广泛应用,提供经济可靠的导航解决方案。原创 2025-11-24 10:00:57 · 1295 阅读 · 0 评论 -
【课题推荐】基于改进遗传算法的公交车调度排班优化研究与实现方案
本文提出了一种基于改进遗传算法的公交车调度排班优化方案,旨在通过多目标优化平衡运营成本、乘客等待时间和车辆满载率。文章首先构建了数学模型,定义了决策变量和约束条件。随后,设计了改进的遗传算法,包括双层编码结构、动态适应度函数和优化的遗传操作(选择、交叉、变异)。Matlab代码实现框架展示了主程序结构和关键函数,如动态适应度计算和禁忌搜索变异。实验结果表明,该方案显著降低了运营成本、减少了乘客等待时间,并提高了资源利用效率。创新点包括混合编码机制、动态权重调整、禁忌引导搜索和多目标协同优化。该方案为公交车调原创 2025-05-12 10:49:35 · 899 阅读 · 0 评论 -
MATLAB程序演示与编程思路,相对导航,四个小车的形式,使用集中式扩展卡尔曼滤波(fullyCN-EKF)
二维情况下,四个小车各自有绝对定位(GNSS),相互之间部分有相对定位(UWB)时,一个滤波器搞定四个小车的状态滤波。使用EKF。原创 2025-05-06 13:51:16 · 1638 阅读 · 0 评论 -
课题推荐——通信信号处理中的非线性系统状态估计(如信号跟踪、相位恢复等场景),使用无迹卡尔曼滤波(UKF)的非线性滤波算法,MATLAB实现
给出一个基于无迹卡尔曼滤波(UKF)的非线性滤波算法及其MATLAB实现,适用于通信信号处理中的非线性系统状态估计(如信号跟踪、相位恢复等场景)。该算法结合了非线性动态模型和观测模型,并通过UT变换避免雅可比矩阵计算,具有较高的估计精度。原创 2025-05-01 09:58:12 · 1246 阅读 · 0 评论 -
多机动目标多模型粒子滤波(极坐标的情况,强非线性)的MATLAB代码
该代码完整实现了极坐标测量下的多模型粒子滤波,可直接用于二维机动目标跟踪场景。实际应用时需根据具体传感器参数调整噪声模型和运动模型参数。原创 2025-04-25 20:10:47 · 381 阅读 · 0 评论 -
【课题推荐】基于场景的改进IMM算法
模型初始化使用三个经典运动模型(CV、CT、CA)进行目标跟踪::匀速模型,适用于直线匀速运动场景。:匀速转弯模型,适用于弯道匀速转弯场景。:匀加速模型,适用于加速或减速场景。模型个数num_models为 3。场景信息融合定义静态模型转移概率矩阵P_static,表示不同运动模型之间的转移概率。初始值基于预训练的场景信息。根据动态场景调整转移概率:如果交通灯为红灯状态(),则增加 CA 模型的权重(加速/减速模型更适用)。如果没有特殊场景条件,则使用单位矩阵P_dynamic。原创 2025-04-26 10:58:09 · 1048 阅读 · 0 评论 -
【课题推荐】基于TOF和自适应抗差卡尔曼滤波的UWB室内定位算法,go语言例程
针对UWB室内定位中存在的非视距(NLOS)干扰与设备时间偏差问题,提出融合改进TOF测距标定与自适应抗差卡尔曼滤波(ARKF)的定位优化算法。通过TOF时间偏差补偿模型与ARKF残差动态调节机制,显著提升复杂场景下的定位精度。实验表明,静态定位误差降低至12cm以内,动态轨迹跟踪误差减少约43%。原创 2025-04-24 10:59:49 · 1191 阅读 · 0 评论 -
【课题推荐】深度学习驱动的交通流量预测系统
包含数据加载→预处理→LSTM建模→卡尔曼滤波优化→可视化全流程。原创 2025-04-19 10:23:23 · 385 阅读 · 0 评论 -
【课题推荐】多速率自适应卡尔曼滤波(MRAKF)用于目标跟踪
多速率自适应卡尔曼滤波(Multi-Rate Adaptive Kalman Filter, MRAKF)是一种针对多传感器异步数据融合的滤波算法,适用于传感器采样率不同、噪声特性时变的目标跟踪场景。其核心思想是通过分层处理不同速率的数据流,结合自适应机制动态调整过程噪声协方差矩阵(QQQ)和观测噪声协方差矩阵(RRR),以提升状态估计的鲁棒性和精度。多速率同步:高频传感器(如IMU)用于实时状态预测,低频传感器(如GPS、雷达)用于状态校正。自适应噪声调整。原创 2025-04-16 13:24:28 · 1497 阅读 · 0 评论 -
GNSS(GPS、北斗等)与UWB的融合定位例程,matlab,二维平面,使用卡尔曼滤波
系统初始化参数% GNSS定位噪声标准差(米)% UWB测距噪声标准差(米)100 0];% GNSS基站与UWB基站坐标(二维)室外场景:优先使用GNSS定位,UWB作为辅助修正(通过协方差权重调整)室内场景:依赖UWB与IMU组合,GNSS信号失效时启动补偿算法过渡区域:采用动态权重融合策略(如卡尔曼滤波+协方差交集)原创 2025-03-21 13:44:28 · 901 阅读 · 0 评论 -
【课题推荐】使用EKF融合加速度计和陀螺仪数据估计坡度角的方法
状态预测θk∣k−1θk−1ωk−1−bk−1Δtθk∣k−1θk−1ωk−1−bk−1Δtbk∣k−1bk−1bk∣k−1bk−1观测更新θkθk∣k−1Kθzk−avehicleg−sinθk∣k−1θkθk∣k−1Kθgzk−avehicle−。原创 2025-03-12 09:37:18 · 821 阅读 · 0 评论 -
【课题推荐】基于GPS的坡度估计仿真(附源代码)
百分比坡度sΔhΔd×100sΔdΔh×100%角度坡度θarctanΔhΔdθarctanΔdΔh本方案采用百分比坡度进行估计。原创 2025-03-12 09:29:19 · 1239 阅读 · 0 评论 -
课题推荐——无人机在UWB环境下基于TOA/TDOA/AOA的室内定位与精度对比
随着无人机在工业检测、仓储物流、应急救援等室内场景的广泛应用,高精度室内定位技术成为关键支撑。超宽带(UWB)技术凭借其高时间分辨率、强抗多径能力等优势,成为室内定位的主流方案。然而,不同的定位方法(如TOA、TDOA、AOA)在复杂室内环境中的性能差异显著,如何优化算法以提升定位精度和鲁棒性成为研究热点。本课题通过构建仿真系统,对比分析典型定位算法的性能特性,并针对TDOA方法的缺陷提出改进方案,为实际工程应用提供理论依据。原创 2025-03-07 19:03:39 · 2109 阅读 · 0 评论
分享