基于MATLAB的RLC电路暂态过程仿真

摘要:MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,矩阵运算、绘制图像是其常用功能。本文将MATLAB与大学物理实验RLC充放电过程相结合,模拟出在不同阻尼条件下的uc变化曲线。

关键词:RLC;MATLAB;暂态过程

在阶跃电压作用下,RLC串联电路由一个平衡态跳变到另一个平衡态,这一转变过程成为暂态过程。利用MATLAB软件强大的功能可以模拟该过程,对于在实验教学中大力开发计算机模拟有重要意义。

1 实验原理

将R、L和C串联成如图1所示的线路图,当开关K合向“1”时,电源E将对电容C充电。

电路方程为:

                                     (1.1)                                                                

代入得:

                                         (1.2)                                           

根据初始条件,当t=0时,uc=0,duc/dt=0的解方程,式(1.2)解电路参数不同有以下三种情况:

(1)时,属于阻尼较小的情况,即在“欠阻尼”情况下,方程的解为:

                                    (1.3)

其中时间常数τ=2L/R,衰减振动的角频率,衰减振动的周期为T=2π/ω

(2)时,属于“临界阻尼”情况,方程的解为:

                                                         (1.4)                        

临界阻尼状态是从阻尼振动到过阻尼状态的分界,即uc刚好不振动的情况。

(3)时,属于“过阻尼”情况,方程的解为:

                                         (1.5)

其中时间常数τ=2L/R,衰减振动的角频率,式(1.5)表示,uc以是以缓慢的方式逐渐达到E值。可以证明,若LC固定,随电阻R的增加,uc增大到E值的过程更加缓慢。

当上述过程达到稳定后,将开关迅速从“1”转换至“2”电容就在RLC电路放电,uc的解为:

2 MATLAB模拟RLC电路的充放电过程

由于方程(1.2)为二阶微分方程,可以先将该方程降阶成为一阶微分方程,再用MATLAB进行数值求解。令

于是方程(1.2)可转化成下面两个一阶微分方程组:

放电过程:

                                      

充电过程:

取R=500,L=0.4,C=4e-7,此时帮R2<4L/C,电路处于欠阻尼振荡状态。对上述方程组可编写MATLAB程序:

function dy = RLC(t, y)  
%设置参数
R=500;%欠阻尼
% R=2000;%临界阻尼
% R=5000;%过阻尼
L=0.4;  
C=4e-7;
E=0.5

dy = zeros(2,1); % 初始化导数向量  
dy(1) = y(2); % 电容电压对时间的一阶导数  
% dy(2) = -(R/L)*y(2)-y(1)/(L*C); % 电容电压对时间的二阶导数 放电
dy(2) =E/(L*C) -(R/L)*y(2)-y(1)/(L*C); % 电容电压对时间的二阶导数 充电
end

t=0时,由于已经充电完毕,电容两端的电压等于电源的电压,即uc(0)=E=0.5。由于电路中有电感线圈L,此时电路中的电流也不能发生突变,由i(0)=0,uc(0)=0通过以上分析,得出了RLC串联电路的两个初始条件:uc(0)=0和u’c(0)=0。

取R分别为2 000、5 000,C的值不变,此时分别满足R2=4L/CR2>4L/C电路分别处于临界阻尼状态和过阻尼状态。

在MATLAB命令窗口输入:

[t y]=ode45('RLC',[0,0.05],[0.5;0]);%放电
%[t y]=ode45('RLC',[0,0.05],[0;0]);%充电

plot(t, y(:,1));

因为充放电下有三种情况,所用每次出图都需要注释一些代码。

模拟结果分别如图所示。

参考文献:

[1]丁益民, and 陈倩. "基于MATLAB的RLC电路暂态过程的模拟." 大学物理实验 24.2(2011):3.

[2]段晓丽. "基于MATLAB的RLC电路暂态过程仿真." 山西大同大学学报:自然科学版 (2014).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值