欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/126508366
免责声明:本文来源于个人知识与开源资料,仅用于学术交流,不包含任何商业技术,欢迎相互学习,不支持转载。
AlphaFold 是基于深度学习的方法,可以根据氨基酸序列,预测蛋白质的三维结构。在 CASP 竞赛中,展示惊人的准确性,达到了原子级别的精度。AlphaFold2 的核心思想是利用 多序列比对(MSA) 和进化信息来构建蛋白质的特征表示,然后,使用一个 Transformer 模型来预测残基之间的距离和角度,最后,使用一个结构模块来优化和输出三维坐标。AlphaFold 的创新之处在于它能够端到端地训练和预测蛋白质结构,同时融合了物理和生物学的知识。AlphaFold 为蛋白质科学和生命科学领域,带来了新的机遇和挑战。