Server - 使用网盘快速下载 Hugging Face 大模型

文章介绍了如何使用HuggingFace平台的资源,特别是对于大型NLP模型,如llama-13b-hf,由于下载速度慢的问题,建议通过百度网盘和bypy工具进行加速下载。此外,文章还详细阐述了如何设置git和SSHKeys来优化模型工程的下载过程,以及如何使用cp命令覆盖现有文件夹。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/131307090

HC

Hugging Face 是一家专注于自然语言处理(NLP)的公司,提供了多种工具和平台,帮助开发者和研究者构建和部署先进的 NLP 应用。Hugging Face 的核心产品是 Transformers 库,一个开源的 Python 库,包含了数千个预训练的 NLP 模型,涵盖了文本分类、问答、文本生成、情感分析等多个任务。Huggingface 还提供了 Datasets 库,是一个开源的数据集集合,包含了超过 1000 个 NLP 数据集,方便用户快速加载和处理数据。此外,Hugging Face 还有 Spaces 平台,是一个在线的交互式环境,让用户可以轻松地创建、分享和运行 NLP 应用。Hugging Face 的使命是让 NLP 对每个人都开放和易用,推动人类和机器之间的沟通。

目前,很多大模型,如 llama-13b-hf ,都是存放于 Huggingface,但是由于国内的网速原因,导致即使使用 git lfs 下载缓慢,建议直接使用网盘,如百度网盘,连接服务器,进行下载。

1. 下载资源

从网络中,寻找大模型,如 llama-13b-hf 资源,参考,转载至百度网盘。

准备下载工具 GitHub - houtianze/bypy,直接安装即可,

pip install bypy

bypy 可用,输入 bypy info,登录账号,输入验证码 (Authorization Code),即可使用。

Please visit:
https://openapi.baidu.com/oauth/2.0/authorize?client_id=[something]   # 手动访问链接
And authorize this app
Paste the Authorization Code here within 10 minutes.
Press [Enter] when you are done
[Your Authorization Code]   # 从网络上获取的验证码
Authorizing, please be patient, it may take upto 300 seconds...
Quota: 2.005TB
Used: 491.832GB

建议升级 SVIP 提升下载速度

接着,将需要下载文件复制到百度网盘的 pyby 文件夹,已默认创建,位于全部文件 -> 我的应用数据 -> bypybypy即根目录。

下载命令如下:

bypy downdir /decapoda-research-llama-13b-hf/ ./decapoda-research-llama-13b-hf/

文件下载速度较快,约 4 MB/s,这样就可以规避 Huggingface 下载较慢的过程。

2. 合并工程

通过先下载工程,再合并参数的方式,建议使用 git 方式,完成整体工程下载。即

git clone git@hf.co:decapoda-research/llama-13b-hf.git

如遇到问题 Error in the pull function,建议 rm ~/.gitconfig 即可。

如需使用 git 方式,需要在 Hugging Face 的账号中,上传 SSH & GPG Keys,即上传 id_rsa.pub 的内容。

同时,在服务器中,上传 id_rsa 文件至 ~/.ssh/id_rsa,同时,修改权限,否则报错,Permissions 0664 for 'id_rsa' are too open.,即:

chmod 400 ~/.ssh/id_rsa

这样即可使用 git 下载链接,进行下载。

复制文件时,使用 cp -af 覆盖已有文件夹,可以完成工程下载:

cp -rf decapoda-research-llama-13b-hf/*.bin llama-13b-hf/
cp -rf decapoda-research-llama-13b-hf/*.model llama-13b-hf/

参考

### 如何在本地部署大语言模型服务器 #### 所需硬件配置 对于希望在本地环境中部署大型语言模型(LLM),合适的硬件配置至关重要。通常情况下,这类模型需要强大的计算资源来支持其运算需求。推荐的最低规格包括但不限于: - CPU:多核处理器,建议至少8核心以上; - GPU:高性能图形处理单元,如NVIDIA RTX系列或A100等,具备较大显存容量者更佳; - RAM:充足的随机访问内存,依据具体应用场景而定,一般不少于64GB; - 存储空间:快速读写的固态硬盘(SSD),确保有足够的存储量以容纳庞大的数据集与预训练权重文件。 上述配置有助于保障模型加载速度以及推理过程中的流畅度[^1]。 #### 软件依赖准备 除了必要的物理设施外,在着手构建之前还需确认已准备好相应的软件环境。这主要包括操作系统的选择——Linux发行版通常是首选;其次是Python解释器及其配套库的安装。由于可能存在多个项目共存的情况,强烈建议通过`conda`管理独立的工作区,从而避免不同项目的包之间发生冲突。更新至最新版本可以有效减少兼容性方面的问题: ```bash conda update conda ``` 此外,针对特定框架的需求,比如PyTorch、TensorFlow等机器学习平台的支持也不可或缺。这些工具提供了实现神经网络架构所需的API接口,并简化了许多底层操作流程[^2]。 #### 安装步骤概述 ##### 创建并激活虚拟环境 为了保持系统的整洁性和稳定性,应当先建立一个新的Conda环境专门用于此次开发活动: ```bash conda create --name llm_env python=3.9 conda activate llm_env ``` ##### 获取源码仓库 找到一个可靠的开源项目作为起点,利用Git克隆远程仓库到本地磁盘位置: ```bash git clone https://github.com/example/llm_project.git cd llm_project ``` 请注意替换实际存在的URL地址。 ##### 解决依赖关系 进入目标目录后执行pip命令自动下载缺少的部分: ```bash pip install -r requirements.txt ``` 如果有任何错误提示指出某些组件无法正常工作,请参照官方文档说明调整参数直至成功完成整个过程。 ##### 启动服务端口监听 一切就绪之后就可以尝试启动HTTP API Server了,大多数时候只需简单输入如下指令即可让程序处于待命状态等待客户端请求的到来: ```python from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import torch model_name = "facebook/opt-350m" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=torch.cuda.current_device() if torch.cuda.is_available() else -1) app.run(host='0.0.0.0', port=5000) ``` 这段代码展示了基于Hugging Face Transformers库创建的一个简易文本生成管道实例化对象,并将其绑定到了指定IP地址及端口号之上以便外部调用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值