LLM - 大语言模型的预训练数据(Dataset) 概述

本文介绍了大语言模型的预训练数据,包括维基百科、书籍、期刊、问答等内容,强调数据多样性和处理流程。此外,详细阐述了BPE(Byte Pair Encoding)方法在NLP中的应用,用于减少词汇表大小并保持语言表达能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/136636105

大语言模型的预训练数据

大语言模型的预训练数据通常包括网页数据、书籍、新闻、科学文章等多种类型的文本。这些数据帮助模型学习语言的语法、语义和上下文信息。预训练阶段是模型构建的基础,通过无监督学习从海量文本中提取知识。

大语言模型的预训练数据通常涵盖了广泛的文本类型,以确保模型能够理解和生成多样化的语言内容。开源的数据集被广泛用于大语言模型的预训练,即:

  1. 维基百科类:包括各种语言的维基百科文章,这些数据集通常用于训练模型以理解和生成百科全书式的内容。
  2. 书籍类:例如BookCorpus,包含大量的未出版书籍文本,有助于模型学习文学和叙述性语言。
  3. 期刊类:如Pubmed
### 关于在魔搭社区进行LLM大模型微调的实战教程 #### 大模型微调入门实战概述 对于希望深入理解并实践大型语言模型(LLM)微调的学习者来说,在魔搭社区找到合适的资源至关重要。具体到Qwen2这一特定的大模型,存在详尽的入门级实战指南[^2]。 #### 完整代码实例展示 针对Qwen2-1.5B版本的具体操作流程已被记录下来,并提供了完整的源码供参考。此部分不仅涵盖了理论讲解还包含了实际编码实现细节,有助于读者更好地掌握如何调整超参数以及优化策略来提升模型表现。 ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch tokenizer = AutoTokenizer.from_pretrained("model_id") model = AutoModelForSeq2SeqLM.from_pretrained("model_id") def fine_tune_model(training_data_path): # 加载训练数据dataset = load_dataset('csv', data_files=training_data_path) def tokenize_function(examples): return tokenizer(examples['text'], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) training_args = TrainingArguments( output_dir="./results", evaluation_strategy="epoch", learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_datasets["train"], eval_dataset=tokenized_datasets["test"] ) trainer.train() fine_tune_model('/path/to/training/data.csv') ``` 上述Python脚本展示了基于Hugging Face库对指定ID下的预训练模型执行微调的过程。通过设置不同的`TrainingArguments`选项,可以灵活控制整个训练周期内的各项配置项,从而满足不同应用场景的需求。 #### 数据准备与处理方法论 为了使微调工作更加高效,通常还需要特别注意输入给定的数据质量及其格式转换方式。例如,在这里提到的例子中采用了Fudan大学新闻分类语料作为训练素材之一;而在其他情况下,则可能涉及更多样化的文本来源。无论哪种情形下,都建议先做好充分清洗和标注前的工作再投入正式训练环节。 #### 总结与经验分享 综上所述,借助像魔搭这样的开源平台所提供的工具链和服务支持,即使是初学者也能较为轻松地上手尝试LLM微调任务。当然,除了遵循既有的指导文档外,积极参与社区交流、勇于探索未知领域同样重要——这往往能带来意想不到的新发现!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值