勒让德变换和哈密顿运动方程

哈密体系并不优越于拉格朗日体系,尤其是在解决实际问题时,拉格朗日理论更具有可操作性,而哈密顿理论则更显复杂。在揭示物理规律内在结构时充分体现出哈密顿理论的优势,例如在经典力学中,哈密顿理论可以引出哈密顿-雅可比理论(Hamilton-Jacobi theory),扰动理论(perturbation),以及混沌(chaos)。在非经典力学中,哈密顿理论是描述统计力学和量子力学的基本语言。

现在我们只考虑可积系统(holonomic),并且力场是monogenic的(即有势力或速度相关的势力)。

1. 从拉格朗日体系进入哈密顿体系

拉格朗日非相对论情形下, n n n个自由度的系统,可由 n n n个运动方程描述:
d d t ( ∂ L ∂ q ˙ i ) − ∂ L ∂ q i = 0 ( 8.1 ) \begin{aligned} \frac{{\rm d}}{{\rm d}t} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}=0 \end{aligned} \qquad (8.1) dtd(q˙iL)qiL=0(8.1)

这是一个二阶方程,当 2 n 2n 2n个初始条件都给定时,该系统在任何时刻都是确定性的。这 2 n 2n 2n个初始条件可以是在 t 1 t_1 t1时刻 n n n q i q_i qi q ˙ i \dot{q}_i q˙i的值,或者 n n n q i q_i qi在两个不同时刻 t 1 t_1 t1 t 2 t_2 t2的值。

这个系统的状态可由一个 n n n维空间中的一个点表示,这个空间叫configuration scpae(构型空间),它的坐标是 n n n个广义坐标 q i q_i qi

在拉格朗日观点中,具有 n n n个自由度的系统的问题就是在 n n n个变量 q i q_i qi中的问题,而 q ˙ i \dot{q}_i q˙i只是 q i q_i qi对时间导数的一种记号而已。所有的 n n n个坐标必须是相互独立的。

在哈密顿理论中,允许坐标之间没有约束。如果 n n n个坐标不是相互独立的,那么在解决问题时,必须做如下退化处理(使得 m m m个坐标, m < n m<n m<n)。

在哈密顿理论中,我们寻找用一阶方程描述运动。我们已知确定一个系统需要 2 n 2n 2n个初始条件,因此相应的一阶方程数量也应为 2 n 2n 2n。于是在相空间中后(phase space),这些 2 n 2n 2n个方程描述了一个相空间中的点的行为,这个点有 2 n 2n 2n个独立坐标。于是相比拉格朗日理论,哈密顿理论很自然地将坐标数目扩充至 2 n 2n 2n个,并且如果我们令这写坐标中的一半为广义坐标 q i q_i qi(generlized coordinates)另一半为共轭的动量 p i p_i pi(conjugate momenta),则可以发现这个框架是对称的(这是后话了)。共轭动量写为:
p i = ∂ L ( q j , q ˙ j , t ) ∂ q ˙ i , on sum on  j ( 8.2 ) p_i = \frac{\partial L(q_j,\dot{q}_j,t)}{\partial \dot{q}_i}, \quad \text{on sum on } j \qquad (8.2) pi=q˙iL(qj,q˙j,t),on sum on j(8.2)

变量 ( q , p ) (q,p) (q,p)称为正则变量(canonical variables)。

从数学上看,从拉格朗日体系过渡到哈密顿体系对应着将力学函数的变量从 ( q , q ˙ , t ) (q,\dot{q},t) (q,q˙,t)转换为 ( q , p , t ) (q,p,t) (q,p,t),其中动量 q q q通过式(8.2)与 q q q q ˙ \dot{q} q˙相联系。实现上述变量转换的方法就是勒让德变换(Legendre transformation)。下面先介绍勒让德变换,然后在第3节再回到哈密顿理论。

2. 勒让德变换

现在考虑一个只有两个变量的函数 f ( x , y ) f(x,y) f(x,y),于是函数 f f f的微分为:
d f = u d x + v d y ( 8.3 ) {\rm d} f = u {\rm d}x + v {\rm d}y \qquad (8.3) df=udx+vdy(8.3)

其中 u = ∂ f / ∂ x u = \partial f/\partial x u=f/x v = ∂ f / ∂ y v = \partial f/\partial y v=f/y

现在我们希望将变量从 x , y x,y x,y转换为 u , y u,y u,y,于是式(8.3)的微分就变成以 d u {\rm d}u du d y {\rm d}y dy表示的。为此,令函数 g g g的变量是 u u u y y y,并且 g g g由下式定义:
g = f − u x g = f - ux g=fux

于是函数 g g g的微分为:
d g = d f − u d x − x d u {\rm d}g = {\rm d}f - u{\rm d}x - x{\rm d}u dg=dfudxxdu

进一步根据式(8.3),写为;
d g = v d y − x d u {\rm d}g = v {\rm d}y - x{\rm d}u dg=vdyxdu

这就是我们想要的形式。类比式(8.3), v v v x x x现在成了 u u u y y y的函数,其中 v = ∂ g / ∂ y v = \partial g/\partial y v=g/y x = − ∂ g / ∂ u x = - \partial g/\partial u x=g/u

以上讨论的勒让德变换在热力学中经常用到。例如,热力学第一定律将能量的微分变化(differerntial change in energy) d U {\rm d}U dU与它相应的 热量(heat content,the quantity of heat) d Q {\rm d}Q dQ 和功(work) d W {\rm d}W dW相联系:
d U = d Q − d W ( 8.7 ) {\rm d}U = {\rm d}Q -{\rm d}W \qquad (8.7) dU=dQdW(8.7)

可逆过程中的气体,上式可写为:
d U = T d S − P d V ( 8.8 ) {\rm d}U = T{\rm d}S - P{\rm d}V \qquad (8.8) dU=TdSPdV(8.8)

这里能量 U U U(energy)是熵(entropy) S S S和体积(volume) V V V的函数,即 U ( S , V ) U(S,V) U(S,V)。其中的 temperature T T T和gas pressure P P P可类比式(8.3)写为能量分别对熵和体积的偏导数,即 T = ∂ U / ∂ S T = \partial U/\partial S T=U/S P = − ∂ U / ∂ V P = - \partial U/\partial V P=U/V

可由勒让德变换引出焓(enthalpy), H ( S , P ) H(S,P) H(S,P)
H = U + P V ( 8.10 ) H = U+PV \qquad (8.10) H=U+PV(8.10)

其全微分为:
d H = d U + P d V + V d P {\rm d}H = {\rm d}U + P{\rm d}V + V{\rm d} P dH=dU+PdV+VdP

代入式(8.8)得到:
d H = T d S + V d P {\rm d}H =T{\rm d}S + V{\rm d} P dH=TdS+VdP

其中的温度和体积分别为焓对熵和压强的偏导数,即 T = ∂ H / ∂ S T = \partial H/\partial S T=H/S V = ∂ H / ∂ P V = \partial H/\partial P V=H/P

此外还存在其它勒让德变换,例如亥姆霍兹自由能 F ( T , V ) F(T,V) F(T,V)和吉布斯自由能 G ( T , P ) G(T,P) G(T,P)
F = U − T S , G = H − T S F=U-TS, \quad G = H-TS F=UTS,G=HTS

3. 勒让德变换在经典力学中的应用

现在回到第1节末尾的问题,如何从拉格朗日理论过渡至哈密顿理论。力学函数的变量从 ( q , q ˙ , t ) (q,\dot{q},t) (q,q˙,t)转换为 ( q , p , t ) (q,p,t) (q,p,t)与第2节中讨论的热力学变量不同,区别在于这里只需要考虑一个变量的变换,即 q ˙ → p \dot{q} \rightarrow p q˙p。为此我们先从拉格朗日量的全微分开始:
d L = ∂ L ∂ q i d q i + ∂ L ∂ q ˙ i d q ˙ i + ∂ L ∂ t d t ( 8.13 ) {\rm d}L = \frac{\partial L}{\partial q_i} {\rm d}q_i + \frac{\partial L}{\partial \dot{q}_i} {\rm d}\dot{q}_i + \frac{\partial L}{\partial t} {\rm d}t \qquad(8.13) dL=qiLdqi+q˙iLdq˙i+tLdt(8.13)

动量 p p p已在式(8.3)定义,将其代入拉格朗日方程式(8.1):
p ˙ i = ∂ L ∂ q i ( 8.14 ) \dot{p}_i = \frac{\partial L}{\partial q_i} \qquad(8.14) p˙i=qiL(8.14)

于是式(8.13)可写为:
d L = p ˙ i d q i + p i d q ˙ i + ∂ L ∂ t d t ( 8.1 3 ′ ) {\rm d}L = \dot{p}_i {\rm d}q_i + p_i {\rm d}\dot{q}_i + \frac{\partial L}{\partial t} {\rm d}t \qquad(8.13') dL=p˙idqi+pidq˙i+tLdt(8.13)

哈密顿量 H ( q , p , t ) H(q,p,t) H(q,p,t)由勒让德变化引出;
H ( q , p , t ) = q ˙ i p i − L ( q , q ˙ , t ) ( 8.15 ) H(q,p,t) = \dot{q}_i p_i - L(q,\dot{q},t) \qquad(8.15) H(q,p,t)=q˙ipiL(q,q˙,t)(8.15)

全微分为(代入式(8.13’)):
d H = q ˙ i d p i + p i d q ˙ i − d L = q ˙ i d p i + p i d q ˙ i − ( p ˙ i d q i + p i d q ˙ i + ∂ L ∂ t d t ) {\rm d} H = \dot{q}_i {\rm d} p_i +p_i {\rm d} \dot{q}_i - {\rm d} L = \dot{q}_i {\rm d} p_i +p_i {\rm d} \dot{q}_i - (\dot{p}_i {\rm d}q_i + p_i {\rm d}\dot{q}_i + \frac{\partial L}{\partial t} {\rm d}t) dH=q˙idpi+pidq˙idL=q˙idpi+pidq˙i(p˙idqi+pidq˙i+tLdt)

⇒ \Rightarrow

d H = q ˙ i d p i − p ˙ i d q i − ∂ L ∂ t d t ( 8.16 ) {\rm d} H = \dot{q}_i {\rm d} p_i - \dot{p}_i {\rm d}q_i - \frac{\partial L}{\partial t} {\rm d}t \qquad(8.16) dH=q˙idpip˙idqitLdt(8.16)

由于哈密顿了 H H H的全微分还可写为:
d H = ∂ H ∂ q i d q i + ∂ H ∂ p i d p i + ∂ H ∂ t d t ( 8.17 ) {\rm d}H = \frac{\partial H}{\partial q_i} {\rm d} q_i+ \frac{\partial H}{\partial p_i} {\rm d} p_i+ \frac{\partial H}{\partial t} {\rm d}t \qquad(8.17) dH=qiHdqi+piHdpi+tHdt(8.17)

于是对比式(8.16)和(8.17),我们得到 2 n + 1 2n+1 2n+1个关系式:
q ˙ i = ∂ H ∂ p i p ˙ i = − ∂ H ∂ q i ∂ L ∂ t = − ∂ H ∂ t ( 8.18 ) \begin{aligned} &\dot{q}_i = \frac{\partial H}{\partial p_i} \\ &\dot{p}_i= - \frac{\partial H}{\partial q_i}\\ &\frac{\partial L}{\partial t} = - \frac{\partial H}{\partial t}\\ \end{aligned} \qquad(8.18) q˙i=piHp˙i=qiHtL=tH(8.18)

这就是哈密顿量的正则方程(canonical equations of Hamiltonian)。这 2 n 2n 2n个一阶方程起到 n n n个二阶的拉格朗日方程相同的作用。在哈密顿正则方程中, p p p q q q的地位是相同的,第一、二个方程分别描述了 q ˙ i \dot{q}_i q˙i p ˙ i \dot{p}_i p˙i q , p , t q,p,t q,p,t的关系。

4. 哈密顿量

通常来说,构建哈密顿量时,需要通过拉格朗日框架实现,步骤如下:

  1. 根据选定的广义坐标 q i q_i qi构建拉格朗日量 L ( q i , q ˙ i , t ) = T − V L(q_i,\dot{q}_i,t)=T-V L(qi,q˙i,t)=TV
  2. 构建共轭动量 p i p_i pi,这是通过计算拉格朗日量 L L L对广义速度的偏导得到的(式(8.2));
  3. 由式(8.15)构建哈密顿量;
  4. 由式(8.2)反算 q ˙ i \dot{q}_i q˙i,表达为 q , p , t q,p,t q,p,t的函数;
  5. 因此可消去 H H H中的 q ˙ i \dot{q}_i q˙i

拉格朗日量可以视为广义速度的 0 , 1 , 2 0,1,2 0,1,2 齐次函数的和。于是根据式(8.15),哈密顿量写为:
H ( q , p , t ) = q ˙ i p i − L ( q , q ˙ , t ) = q ˙ i p i − [ L 0 ( q i , t ) + L 1 ( q i , t ) q ˙ k + L 2 ( q i , t ) q ˙ k q ˙ m ] ( 8.20 ) H(q,p,t) = \dot{q}_i p_i - L(q,\dot{q},t) = \dot{q}_i p_i - \left[ L_0(q_i,t) +L_1(q_i,t) \dot{q}_k+ L_2(q_i,t) \dot{q}_k \dot{q}_m \right] \qquad(8.20) H(q,p,t)=q˙ipiL(q,q˙,t)=q˙ipi[L0(qi,t)+L1(qi,t)q˙k+L2(qi,t)q˙kq˙m](8.20)

注意上式不采用求和约定。如果广义坐标不显含时间,那么 L 2 q ˙ k q ˙ m = T L_2 \dot{q}_k \dot{q}_m = T L2q˙kq˙m=T(动能),如果处于保守立场,则 L 0 = − V L_0=-V L0=V,其中 V V V为势能。当所有条件都满足,哈密顿量自然地可写为总能量:
H = T + V = E ( 8.21 ) H=T+V = E \qquad(8.21) H=T+V=E(8.21)

在许多问题中, L 2 L_2 L2是广义速度地二次函数, L 1 L_1 L1是线性函数:
L ( q , q ˙ , t ) = L 0 ( q , t ) + q ˙ i a i ( q , t ) + q ˙ i 2 T i ( q , t ) ( 8.22 ) L(q,\dot{q},t) = L_0(q,t) + \dot{q}_i a_i(q,t)+ \dot{q}_i^2 T_i(q,t) \qquad (8.22) L(q,q˙,t)=L0(q,t)+q˙iai(q,t)+q˙i2Ti(q,t)(8.22)

其矩阵形式为:
L ( q , q ˙ , t ) = L 0 ( q , t ) + q ˙ ~ a + 1 2 q ˙ ~ T q ˙ ( 8.23 ) L(q,\dot{q},t) = L_0(q,t) + \tilde{\dot{\bm{q}}} \bm{a} + \frac{1}{2} \tilde{\dot{\bm{q}}} \bm{T} \dot{\bm{q}} \qquad (8.23) L(q,q˙,t)=L0(q,t)+q˙~a+21q˙~Tq˙(8.23)

式中 q ˙ ~ \tilde{\dot{\bm{q}}} q˙~表示行向量,是列向量 q ˙ \dot{\bm{q}} q˙的转置。

考虑一个算例来说明以上公式。 q i = [ x , y , z ] q_i = [x,y,z] qi=[x,y,z] T \bm{T} T是对角阵,于是:
1 2 q ˙ ~ T q ˙ = 1 2 ( x ˙ y ˙ z ˙ ) [ m 0 0 0 m 0 0 0 m ] [ x ˙ y ˙ z ˙ ] = 1 2 m ( x ˙ 2 + y ˙ 2 + z ˙ 2 ) ( 8.24 a ) \frac{1}{2} \tilde{\dot{\bm{q}}} \bm{T} \dot{\bm{q}} =\frac{1}{2} (\dot{x}\dot{y}\dot{z}) \begin{bmatrix} m&0&0\\ 0&m&0\\ 0&0&m\\ \end{bmatrix} \begin{bmatrix} \dot{x}\\ \dot{y} \\ \dot{z} \end{bmatrix} =\frac{1}{2} m \left( \dot{x}^2 +\dot{y}^2+\dot{z}^2 \right) \qquad(8.24{\rm a}) 21q˙~Tq˙=21(x˙y˙z˙) m000m000m x˙y˙z˙ =21m(x˙2+y˙2+z˙2)(8.24a)

以及
q ˙ ~ a = ( x ˙ y ˙ z ˙ ) [ a x a y a z ] = a x x ˙ + a y y ˙ + a z z ˙ = a ⋅ r ˙ ( 8.24 b ) \tilde{\dot{\bm{q}}} \bm{a} = (\dot{x}\dot{y}\dot{z}) \begin{bmatrix} a_x \\a_y \\a_z \end{bmatrix} = a_x \dot{x} + a_y \dot{y} + a_z \dot{z} = \bm{a} \cdot \dot{r} \qquad(8.24{\rm b}) q˙~a=(x˙y˙z˙) axayaz =axx˙+ayy˙+azz˙=ar˙(8.24b)

采用如何记法,哈密顿量(式(8.15)):
H ( q , p , t ) = q ˙ ~ p − L ( q , q ˙ , t ) = q ˙ ~ ( p − a ) − 1 2 q ˙ ~ T q ˙ − L 0 ( 8.24 c ) H(q,p,t) = \tilde{\dot{\bm{q}}} \bm{p} - L(q,\dot{q},t) = \tilde{\dot{\bm{q}}}(\bm{p}-\bm{a}) -\frac{1}{2} \tilde{\dot{\bm{q}}} \bm{T} \dot{\bm{q}}-L_0\qquad(8.24{\rm c}) H(q,p,t)=q˙~pL(q,q˙,t)=q˙~(pa)21q˙~Tq˙L0(8.24c)

广义动量(式(8.2)):
p = T q ˙ + a ( 8.25 ) \bm{p} = \bm{T} \dot{\bm{q}} + \bm{a} \qquad(8.25) p=Tq˙+a(8.25)

求它的逆,得到广义速度:
q ˙ = T − 1 ( p − a ) ( 8.26 a ) \dot{\bm{q}} = \bm{T}^{-1} (\bm{p} -\bm{a}) \qquad(8.26{\rm a}) q˙=T1(pa)(8.26a)

其转置为:
q ˙ ~ = ( p ~ − a ~ ) T − 1 ( 8.26 b ) \tilde{\dot{\bm{q}}} = (\tilde{\bm{p}} - \tilde{\bm{a}}) \bm{T}^{-1} \qquad(8.26{\rm b}) q˙~=(p~a~)T1(8.26b)

式(8.24)中的行向量 q ˙ ~ \tilde{\dot{\bm{q}}} q˙~和列向量 q ˙ \dot{\bm{q}} q˙ 分别用式(8.26b)和(8.26a)代入,得到哈密顿量的最终表达式:
H ( q , p , t ) = 1 2 ( p ~ − a ~ ) T − 1 ( p − a ) − L 0 ( q , t ) ( 8.27 ) H(q,p,t) = \frac{1}{2} (\tilde{\bm{p}} - \tilde{\bm{a}}) \bm{T}^{-1} (\bm{p}-\bm{a}) - L_0(q,t) \qquad(8.27) H(q,p,t)=21(p~a~)T1(pa)L0(q,t)(8.27)

参考资料

Goldstein经典力学(第二版,1980年)勘误表

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值