哈密体系并不优越于拉格朗日体系,尤其是在解决实际问题时,拉格朗日理论更具有可操作性,而哈密顿理论则更显复杂。在揭示物理规律内在结构时充分体现出哈密顿理论的优势,例如在经典力学中,哈密顿理论可以引出哈密顿-雅可比理论(Hamilton-Jacobi theory),扰动理论(perturbation),以及混沌(chaos)。在非经典力学中,哈密顿理论是描述统计力学和量子力学的基本语言。
现在我们只考虑可积系统(holonomic),并且力场是monogenic的(即有势力或速度相关的势力)。
1. 从拉格朗日体系进入哈密顿体系
拉格朗日非相对论情形下,
n
n
n个自由度的系统,可由
n
n
n个运动方程描述:
d
d
t
(
∂
L
∂
q
˙
i
)
−
∂
L
∂
q
i
=
0
(
8.1
)
\begin{aligned} \frac{{\rm d}}{{\rm d}t} \left( \frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i}=0 \end{aligned} \qquad (8.1)
dtd(∂q˙i∂L)−∂qi∂L=0(8.1)
这是一个二阶方程,当 2 n 2n 2n个初始条件都给定时,该系统在任何时刻都是确定性的。这 2 n 2n 2n个初始条件可以是在 t 1 t_1 t1时刻 n n n个 q i q_i qi和 q ˙ i \dot{q}_i q˙i的值,或者 n n n个 q i q_i qi在两个不同时刻 t 1 t_1 t1和 t 2 t_2 t2的值。
这个系统的状态可由一个 n n n维空间中的一个点表示,这个空间叫configuration scpae(构型空间),它的坐标是 n n n个广义坐标 q i q_i qi。
在拉格朗日观点中,具有 n n n个自由度的系统的问题就是在 n n n个变量 q i q_i qi中的问题,而 q ˙ i \dot{q}_i q˙i只是 q i q_i qi对时间导数的一种记号而已。所有的 n n n个坐标必须是相互独立的。
在哈密顿理论中,允许坐标之间没有约束。如果 n n n个坐标不是相互独立的,那么在解决问题时,必须做如下退化处理(使得 m m m个坐标, m < n m<n m<n)。
在哈密顿理论中,我们寻找用一阶方程描述运动。我们已知确定一个系统需要
2
n
2n
2n个初始条件,因此相应的一阶方程数量也应为
2
n
2n
2n。于是在相空间中后(phase space),这些
2
n
2n
2n个方程描述了一个相空间中的点的行为,这个点有
2
n
2n
2n个独立坐标。于是相比拉格朗日理论,哈密顿理论很自然地将坐标数目扩充至
2
n
2n
2n个,并且如果我们令这写坐标中的一半为广义坐标
q
i
q_i
qi(generlized coordinates)另一半为共轭的动量
p
i
p_i
pi(conjugate momenta),则可以发现这个框架是对称的(这是后话了)。共轭动量写为:
p
i
=
∂
L
(
q
j
,
q
˙
j
,
t
)
∂
q
˙
i
,
on sum on
j
(
8.2
)
p_i = \frac{\partial L(q_j,\dot{q}_j,t)}{\partial \dot{q}_i}, \quad \text{on sum on } j \qquad (8.2)
pi=∂q˙i∂L(qj,q˙j,t),on sum on j(8.2)
变量 ( q , p ) (q,p) (q,p)称为正则变量(canonical variables)。
从数学上看,从拉格朗日体系过渡到哈密顿体系对应着将力学函数的变量从 ( q , q ˙ , t ) (q,\dot{q},t) (q,q˙,t)转换为 ( q , p , t ) (q,p,t) (q,p,t),其中动量 q q q通过式(8.2)与 q q q和 q ˙ \dot{q} q˙相联系。实现上述变量转换的方法就是勒让德变换(Legendre transformation)。下面先介绍勒让德变换,然后在第3节再回到哈密顿理论。
2. 勒让德变换
现在考虑一个只有两个变量的函数
f
(
x
,
y
)
f(x,y)
f(x,y),于是函数
f
f
f的微分为:
d
f
=
u
d
x
+
v
d
y
(
8.3
)
{\rm d} f = u {\rm d}x + v {\rm d}y \qquad (8.3)
df=udx+vdy(8.3)
其中 u = ∂ f / ∂ x u = \partial f/\partial x u=∂f/∂x, v = ∂ f / ∂ y v = \partial f/\partial y v=∂f/∂y
现在我们希望将变量从
x
,
y
x,y
x,y转换为
u
,
y
u,y
u,y,于是式(8.3)的微分就变成以
d
u
{\rm d}u
du和
d
y
{\rm d}y
dy表示的。为此,令函数
g
g
g的变量是
u
u
u和
y
y
y,并且
g
g
g由下式定义:
g
=
f
−
u
x
g = f - ux
g=f−ux
于是函数
g
g
g的微分为:
d
g
=
d
f
−
u
d
x
−
x
d
u
{\rm d}g = {\rm d}f - u{\rm d}x - x{\rm d}u
dg=df−udx−xdu
进一步根据式(8.3),写为;
d
g
=
v
d
y
−
x
d
u
{\rm d}g = v {\rm d}y - x{\rm d}u
dg=vdy−xdu
这就是我们想要的形式。类比式(8.3), v v v和 x x x现在成了 u u u和 y y y的函数,其中 v = ∂ g / ∂ y v = \partial g/\partial y v=∂g/∂y, x = − ∂ g / ∂ u x = - \partial g/\partial u x=−∂g/∂u
以上讨论的勒让德变换在热力学中经常用到。例如,热力学第一定律将能量的微分变化(differerntial change in energy)
d
U
{\rm d}U
dU与它相应的 热量(heat content,the quantity of heat)
d
Q
{\rm d}Q
dQ 和功(work)
d
W
{\rm d}W
dW相联系:
d
U
=
d
Q
−
d
W
(
8.7
)
{\rm d}U = {\rm d}Q -{\rm d}W \qquad (8.7)
dU=dQ−dW(8.7)
可逆过程中的气体,上式可写为:
d
U
=
T
d
S
−
P
d
V
(
8.8
)
{\rm d}U = T{\rm d}S - P{\rm d}V \qquad (8.8)
dU=TdS−PdV(8.8)
这里能量 U U U(energy)是熵(entropy) S S S和体积(volume) V V V的函数,即 U ( S , V ) U(S,V) U(S,V)。其中的 temperature T T T和gas pressure P P P可类比式(8.3)写为能量分别对熵和体积的偏导数,即 T = ∂ U / ∂ S T = \partial U/\partial S T=∂U/∂S, P = − ∂ U / ∂ V P = - \partial U/\partial V P=−∂U/∂V
可由勒让德变换引出焓(enthalpy),
H
(
S
,
P
)
H(S,P)
H(S,P):
H
=
U
+
P
V
(
8.10
)
H = U+PV \qquad (8.10)
H=U+PV(8.10)
其全微分为:
d
H
=
d
U
+
P
d
V
+
V
d
P
{\rm d}H = {\rm d}U + P{\rm d}V + V{\rm d} P
dH=dU+PdV+VdP
代入式(8.8)得到:
d
H
=
T
d
S
+
V
d
P
{\rm d}H =T{\rm d}S + V{\rm d} P
dH=TdS+VdP
其中的温度和体积分别为焓对熵和压强的偏导数,即 T = ∂ H / ∂ S T = \partial H/\partial S T=∂H/∂S, V = ∂ H / ∂ P V = \partial H/\partial P V=∂H/∂P
此外还存在其它勒让德变换,例如亥姆霍兹自由能
F
(
T
,
V
)
F(T,V)
F(T,V)和吉布斯自由能
G
(
T
,
P
)
G(T,P)
G(T,P):
F
=
U
−
T
S
,
G
=
H
−
T
S
F=U-TS, \quad G = H-TS
F=U−TS,G=H−TS
3. 勒让德变换在经典力学中的应用
现在回到第1节末尾的问题,如何从拉格朗日理论过渡至哈密顿理论。力学函数的变量从
(
q
,
q
˙
,
t
)
(q,\dot{q},t)
(q,q˙,t)转换为
(
q
,
p
,
t
)
(q,p,t)
(q,p,t)与第2节中讨论的热力学变量不同,区别在于这里只需要考虑一个变量的变换,即
q
˙
→
p
\dot{q} \rightarrow p
q˙→p。为此我们先从拉格朗日量的全微分开始:
d
L
=
∂
L
∂
q
i
d
q
i
+
∂
L
∂
q
˙
i
d
q
˙
i
+
∂
L
∂
t
d
t
(
8.13
)
{\rm d}L = \frac{\partial L}{\partial q_i} {\rm d}q_i + \frac{\partial L}{\partial \dot{q}_i} {\rm d}\dot{q}_i + \frac{\partial L}{\partial t} {\rm d}t \qquad(8.13)
dL=∂qi∂Ldqi+∂q˙i∂Ldq˙i+∂t∂Ldt(8.13)
动量
p
p
p已在式(8.3)定义,将其代入拉格朗日方程式(8.1):
p
˙
i
=
∂
L
∂
q
i
(
8.14
)
\dot{p}_i = \frac{\partial L}{\partial q_i} \qquad(8.14)
p˙i=∂qi∂L(8.14)
于是式(8.13)可写为:
d
L
=
p
˙
i
d
q
i
+
p
i
d
q
˙
i
+
∂
L
∂
t
d
t
(
8.1
3
′
)
{\rm d}L = \dot{p}_i {\rm d}q_i + p_i {\rm d}\dot{q}_i + \frac{\partial L}{\partial t} {\rm d}t \qquad(8.13')
dL=p˙idqi+pidq˙i+∂t∂Ldt(8.13′)
哈密顿量
H
(
q
,
p
,
t
)
H(q,p,t)
H(q,p,t)由勒让德变化引出;
H
(
q
,
p
,
t
)
=
q
˙
i
p
i
−
L
(
q
,
q
˙
,
t
)
(
8.15
)
H(q,p,t) = \dot{q}_i p_i - L(q,\dot{q},t) \qquad(8.15)
H(q,p,t)=q˙ipi−L(q,q˙,t)(8.15)
全微分为(代入式(8.13’)):
d
H
=
q
˙
i
d
p
i
+
p
i
d
q
˙
i
−
d
L
=
q
˙
i
d
p
i
+
p
i
d
q
˙
i
−
(
p
˙
i
d
q
i
+
p
i
d
q
˙
i
+
∂
L
∂
t
d
t
)
{\rm d} H = \dot{q}_i {\rm d} p_i +p_i {\rm d} \dot{q}_i - {\rm d} L = \dot{q}_i {\rm d} p_i +p_i {\rm d} \dot{q}_i - (\dot{p}_i {\rm d}q_i + p_i {\rm d}\dot{q}_i + \frac{\partial L}{\partial t} {\rm d}t)
dH=q˙idpi+pidq˙i−dL=q˙idpi+pidq˙i−(p˙idqi+pidq˙i+∂t∂Ldt)
⇒ \Rightarrow ⇒
d H = q ˙ i d p i − p ˙ i d q i − ∂ L ∂ t d t ( 8.16 ) {\rm d} H = \dot{q}_i {\rm d} p_i - \dot{p}_i {\rm d}q_i - \frac{\partial L}{\partial t} {\rm d}t \qquad(8.16) dH=q˙idpi−p˙idqi−∂t∂Ldt(8.16)
由于哈密顿了
H
H
H的全微分还可写为:
d
H
=
∂
H
∂
q
i
d
q
i
+
∂
H
∂
p
i
d
p
i
+
∂
H
∂
t
d
t
(
8.17
)
{\rm d}H = \frac{\partial H}{\partial q_i} {\rm d} q_i+ \frac{\partial H}{\partial p_i} {\rm d} p_i+ \frac{\partial H}{\partial t} {\rm d}t \qquad(8.17)
dH=∂qi∂Hdqi+∂pi∂Hdpi+∂t∂Hdt(8.17)
于是对比式(8.16)和(8.17),我们得到
2
n
+
1
2n+1
2n+1个关系式:
q
˙
i
=
∂
H
∂
p
i
p
˙
i
=
−
∂
H
∂
q
i
∂
L
∂
t
=
−
∂
H
∂
t
(
8.18
)
\begin{aligned} &\dot{q}_i = \frac{\partial H}{\partial p_i} \\ &\dot{p}_i= - \frac{\partial H}{\partial q_i}\\ &\frac{\partial L}{\partial t} = - \frac{\partial H}{\partial t}\\ \end{aligned} \qquad(8.18)
q˙i=∂pi∂Hp˙i=−∂qi∂H∂t∂L=−∂t∂H(8.18)
这就是哈密顿量的正则方程(canonical equations of Hamiltonian)。这 2 n 2n 2n个一阶方程起到 n n n个二阶的拉格朗日方程相同的作用。在哈密顿正则方程中, p p p和 q q q的地位是相同的,第一、二个方程分别描述了 q ˙ i \dot{q}_i q˙i和 p ˙ i \dot{p}_i p˙i与 q , p , t q,p,t q,p,t的关系。
4. 哈密顿量
通常来说,构建哈密顿量时,需要通过拉格朗日框架实现,步骤如下:
- 根据选定的广义坐标 q i q_i qi构建拉格朗日量 L ( q i , q ˙ i , t ) = T − V L(q_i,\dot{q}_i,t)=T-V L(qi,q˙i,t)=T−V;
- 构建共轭动量 p i p_i pi,这是通过计算拉格朗日量 L L L对广义速度的偏导得到的(式(8.2));
- 由式(8.15)构建哈密顿量;
- 由式(8.2)反算 q ˙ i \dot{q}_i q˙i,表达为 q , p , t q,p,t q,p,t的函数;
- 因此可消去 H H H中的 q ˙ i \dot{q}_i q˙i
拉格朗日量可以视为广义速度的
0
,
1
,
2
0,1,2
0,1,2 齐次函数的和。于是根据式(8.15),哈密顿量写为:
H
(
q
,
p
,
t
)
=
q
˙
i
p
i
−
L
(
q
,
q
˙
,
t
)
=
q
˙
i
p
i
−
[
L
0
(
q
i
,
t
)
+
L
1
(
q
i
,
t
)
q
˙
k
+
L
2
(
q
i
,
t
)
q
˙
k
q
˙
m
]
(
8.20
)
H(q,p,t) = \dot{q}_i p_i - L(q,\dot{q},t) = \dot{q}_i p_i - \left[ L_0(q_i,t) +L_1(q_i,t) \dot{q}_k+ L_2(q_i,t) \dot{q}_k \dot{q}_m \right] \qquad(8.20)
H(q,p,t)=q˙ipi−L(q,q˙,t)=q˙ipi−[L0(qi,t)+L1(qi,t)q˙k+L2(qi,t)q˙kq˙m](8.20)
注意上式不采用求和约定。如果广义坐标不显含时间,那么
L
2
q
˙
k
q
˙
m
=
T
L_2 \dot{q}_k \dot{q}_m = T
L2q˙kq˙m=T(动能),如果处于保守立场,则
L
0
=
−
V
L_0=-V
L0=−V,其中
V
V
V为势能。当所有条件都满足,哈密顿量自然地可写为总能量:
H
=
T
+
V
=
E
(
8.21
)
H=T+V = E \qquad(8.21)
H=T+V=E(8.21)
在许多问题中,
L
2
L_2
L2是广义速度地二次函数,
L
1
L_1
L1是线性函数:
L
(
q
,
q
˙
,
t
)
=
L
0
(
q
,
t
)
+
q
˙
i
a
i
(
q
,
t
)
+
q
˙
i
2
T
i
(
q
,
t
)
(
8.22
)
L(q,\dot{q},t) = L_0(q,t) + \dot{q}_i a_i(q,t)+ \dot{q}_i^2 T_i(q,t) \qquad (8.22)
L(q,q˙,t)=L0(q,t)+q˙iai(q,t)+q˙i2Ti(q,t)(8.22)
其矩阵形式为:
L
(
q
,
q
˙
,
t
)
=
L
0
(
q
,
t
)
+
q
˙
~
a
+
1
2
q
˙
~
T
q
˙
(
8.23
)
L(q,\dot{q},t) = L_0(q,t) + \tilde{\dot{\bm{q}}} \bm{a} + \frac{1}{2} \tilde{\dot{\bm{q}}} \bm{T} \dot{\bm{q}} \qquad (8.23)
L(q,q˙,t)=L0(q,t)+q˙~a+21q˙~Tq˙(8.23)
式中 q ˙ ~ \tilde{\dot{\bm{q}}} q˙~表示行向量,是列向量 q ˙ \dot{\bm{q}} q˙的转置。
考虑一个算例来说明以上公式。
q
i
=
[
x
,
y
,
z
]
q_i = [x,y,z]
qi=[x,y,z],
T
\bm{T}
T是对角阵,于是:
1
2
q
˙
~
T
q
˙
=
1
2
(
x
˙
y
˙
z
˙
)
[
m
0
0
0
m
0
0
0
m
]
[
x
˙
y
˙
z
˙
]
=
1
2
m
(
x
˙
2
+
y
˙
2
+
z
˙
2
)
(
8.24
a
)
\frac{1}{2} \tilde{\dot{\bm{q}}} \bm{T} \dot{\bm{q}} =\frac{1}{2} (\dot{x}\dot{y}\dot{z}) \begin{bmatrix} m&0&0\\ 0&m&0\\ 0&0&m\\ \end{bmatrix} \begin{bmatrix} \dot{x}\\ \dot{y} \\ \dot{z} \end{bmatrix} =\frac{1}{2} m \left( \dot{x}^2 +\dot{y}^2+\dot{z}^2 \right) \qquad(8.24{\rm a})
21q˙~Tq˙=21(x˙y˙z˙)
m000m000m
x˙y˙z˙
=21m(x˙2+y˙2+z˙2)(8.24a)
以及
q
˙
~
a
=
(
x
˙
y
˙
z
˙
)
[
a
x
a
y
a
z
]
=
a
x
x
˙
+
a
y
y
˙
+
a
z
z
˙
=
a
⋅
r
˙
(
8.24
b
)
\tilde{\dot{\bm{q}}} \bm{a} = (\dot{x}\dot{y}\dot{z}) \begin{bmatrix} a_x \\a_y \\a_z \end{bmatrix} = a_x \dot{x} + a_y \dot{y} + a_z \dot{z} = \bm{a} \cdot \dot{r} \qquad(8.24{\rm b})
q˙~a=(x˙y˙z˙)
axayaz
=axx˙+ayy˙+azz˙=a⋅r˙(8.24b)
采用如何记法,哈密顿量(式(8.15)):
H
(
q
,
p
,
t
)
=
q
˙
~
p
−
L
(
q
,
q
˙
,
t
)
=
q
˙
~
(
p
−
a
)
−
1
2
q
˙
~
T
q
˙
−
L
0
(
8.24
c
)
H(q,p,t) = \tilde{\dot{\bm{q}}} \bm{p} - L(q,\dot{q},t) = \tilde{\dot{\bm{q}}}(\bm{p}-\bm{a}) -\frac{1}{2} \tilde{\dot{\bm{q}}} \bm{T} \dot{\bm{q}}-L_0\qquad(8.24{\rm c})
H(q,p,t)=q˙~p−L(q,q˙,t)=q˙~(p−a)−21q˙~Tq˙−L0(8.24c)
广义动量(式(8.2)):
p
=
T
q
˙
+
a
(
8.25
)
\bm{p} = \bm{T} \dot{\bm{q}} + \bm{a} \qquad(8.25)
p=Tq˙+a(8.25)
求它的逆,得到广义速度:
q
˙
=
T
−
1
(
p
−
a
)
(
8.26
a
)
\dot{\bm{q}} = \bm{T}^{-1} (\bm{p} -\bm{a}) \qquad(8.26{\rm a})
q˙=T−1(p−a)(8.26a)
其转置为:
q
˙
~
=
(
p
~
−
a
~
)
T
−
1
(
8.26
b
)
\tilde{\dot{\bm{q}}} = (\tilde{\bm{p}} - \tilde{\bm{a}}) \bm{T}^{-1} \qquad(8.26{\rm b})
q˙~=(p~−a~)T−1(8.26b)
式(8.24)中的行向量
q
˙
~
\tilde{\dot{\bm{q}}}
q˙~和列向量
q
˙
\dot{\bm{q}}
q˙ 分别用式(8.26b)和(8.26a)代入,得到哈密顿量的最终表达式:
H
(
q
,
p
,
t
)
=
1
2
(
p
~
−
a
~
)
T
−
1
(
p
−
a
)
−
L
0
(
q
,
t
)
(
8.27
)
H(q,p,t) = \frac{1}{2} (\tilde{\bm{p}} - \tilde{\bm{a}}) \bm{T}^{-1} (\bm{p}-\bm{a}) - L_0(q,t) \qquad(8.27)
H(q,p,t)=21(p~−a~)T−1(p−a)−L0(q,t)(8.27)