【凸优化】Legendre变换、共轭函数、对偶

目录

推荐文章

一、Legendre变换

1、几何解释1

2、数学推导

3、几何解释2

4、Legendre 变换的Legendre 变换是函数本身

数学推导

几何直观

5、从Legendre 变换函数到原函数的几何直观

二、共轭函数

1、定义及理解

2、几何直观理解非凸函数的共轭函数

三、Legendre变换与共轭函数的关系

四、对偶

1、Legendre 变换在对偶空间中的解释

2、共轭函数在对偶空间中的解释


推荐文章

[凸优化-凸共轭]Legendre and Legendre-Fenchel transforms - 知乎 (zhihu.com)

一、Legendre变换

1、几何解释1

Legendre 变换通过选择斜率 u 作为新的自变量,将函数描述为它的斜率与相应的 x 的函数值之间的关系。几何上,它可以理解为用函数的斜率信息重新描述该函数,极大地拓展了我们在不同变量下描述物理系统的能力。

假设凸函数f(x)的Legendre 变换为G(u),则G(u)的定义域为f(x)的斜率的取值范围,G(u)的取值为f(x)中斜率为 u 的点的函数值。对于凸函数f(x)G(u)中包含的f(x)的所有信息。

2、数学推导

f(x)f(x_{i})是凸函数。

一维情况下的推导  和  多维情况下的推导

3、几何解释2

这部分来看一下Legendre变换后的函数在几何上于原函数的关系:

G(u)=ux-f(x),画在图像上:

公式中的ux等于图中的(F+G),公式中的f(x)等于图中的F,所以公式中的G(u)等于图中的G

即函数切线的负截距。

所以有以下几何解释:

Legendre 变换本质上是将一个曲线的点用该点上的切线表示。换句话说,你将函数的点集换成斜率 u 和切线的截距(由 G(u) 表示)。也就是从一个点集转化为了一个“切线集”,点集中的每个点都包含两个信息:x和y,“切线集”中的每个切线也都包含两个信息:斜率和负截距。

反向推导:

对于f(x),其在某点(x_{0},f(x_{0}))处的切线方程为f(x)=f{}'(x_{0})(x-x_{0})+f(x_{0})

切线方程的斜率为f{}'(x_{0}),负截距为f{}'(x_{0})x_{0}-f(x_{0})

G(u)=ux-f(x)

4、Legendre 变换的Legendre 变换是函数本身

数学推导

几何直观

f(x)上一点(x_{0},f(x_{0}))处的切线为:f(x)=u(x_{0})x-G(u(x_{0}))

G(u)上一点(u_{0},G(u_{0}))处的切线为:G(u)=x(u_{0})u-f(x(u_{0}))

所以他们是Legendre 变换是相互的。

也就是说f(x)的切线的斜率为自变量,负截距为函数值组成的函数G(u)G(u)的切线的斜率和负截距分别是xf(x) 。

5、从Legendre 变换函数到原函数的几何直观

对于一个凸且光滑的函数f(x),在每个点处,有且仅有一个切线与之对应, 而这个切线又可以由G(u)中唯一的一个点来表示,所以f(x)G(u)是唯一对应的,他们相互包含着对方的所有信息。那么如何从G(u)得到f(x)呢?当然可以使用解析的方法,即对G(u)进行Legendre 变换得到f(x)。那么这个过程如何从几何视角来理解呢?

当从f(x)G(u)的变换过程中,G(u)中的每个点都是f(x)中相应点的切线信息,那么通过G(u)即可画出f(x)的所有切线,如图:

当画出所有切线时,在切线的上方将会形成一个保包络,这个包络即是f(x)

同样的,由于f(x)G(u)是相对的,用f(x)上的每个点画出G(u)的所有切线时,切线上的包络也是G(u)的图像。

二、共轭函数

1、定义及理解

了解了Legendre变换后,我们知道,f(x)存在Legendre变换的条件是它可微且是凸函数。对于是否可微,暂且不做讨论。想象一下,当f(x)不是凸函数时,那么仍的Legendre变换,将会出现什么。

显然,其Legendre变换G(u)将会出现一对多的情况,这时取函数值的最大值,即此时Legendre变换的结果G(u)即是f(x)的共轭函数:

                                           f^{*}(y)=\underset{x\epsilon domf}{sup}(y^{T}x-f(x))

对于这个函数,自变量是f(x)的切线的斜率,因变量是切线负截距的最大值。

2、几何直观理解非凸函数的共轭函数

对于凸函数,其共轭函数就是其Legendre变换,共轭函数上的每个点对于原函数的每个点,即共轭函数包含原函数的所有信息,对于非凸函数,共轭函数上的每个点与原函数的对应关系是怎样的呢?从定义可以得知,非凸函数的Legendre变换会出现多对一的情况,共轭函数是取函数值的最大值所以原非凸函数就会有一些点的信息丢失,不会传递到共轭函数,即存在斜率重复的一部分点的信息会丢失。

如图,红色部分的信息将会丢失,不会传递到共轭函数。

同样的,当对共轭函数再做Legendre变换时也不会再出现原函数中的红色段,得到的是边缘的两段函数,断点处直接直线连接。即当原函数不是凸函数时,其共轭函数的共轭函数不再是它本身。

三、Legendre变换与共轭函数的关系

从上面的分析已经可以得出Legendre变换与共轭函数的关系,即

当原函数是凸函数时,其Legendre变换就是其共轭函数;当原函数不是凸函数时,其不再符合Legendre变换的条件,当仍要对其做Legendre变换并取函数值的上确界时,得到的就是非凸函数的共轭函数。

四、对偶

1、Legendre 变换在对偶空间中的解释

Legendre 变换可以看作是将一个函数的表示从原空间映射到对偶空间。这意味着我们将一个函数的输入变量从原空间的变量 x 转换为对偶空间的变量 p(导数),并且通过这种转换构造了一个新函数,这个新函数描述的是原空间中的几何结构在对偶空间中的表现。

Legendre 变换将原始函数 f(x) 中的所有信息通过导数 p 转换到对偶空间 p-空间,描述了在对偶空间中的最大线性泛函形式。也就是说,Legendre 变换在对偶空间中找到了与原空间中曲线 f(x) 对应的线性表示。

2、共轭函数在对偶空间中的解释

共轭函数通过将原函数 f(x) 中的点和切线信息映射到对偶空间 p,从而给出原函数在对偶空间中所有可能的线性映射。这就意味着,我们不再直接处理原空间中的点,而是处理这些点的“线性效应”,这体现了对偶空间中的信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值