Neuron:社会性信息加工的脑区对策略行为的支持

人际互动行为会引起所谓的社会性脑区(即负责社会性信息加工的脑区)的功能活动,这是一个由颞顶联合区(temporoparietal junction, TPJ)、背内侧前额叶皮质(dorsomedial prefrontal cortex, dmPFC)、楔前叶以及左右颞极(right and left temporal poles, RTP和LTP;延伸到颞上沟[superior temporal sulcus, STS])组成的网络。研究者认为大脑的这一活动通常是反映需要模拟互动合作伙伴的心理状态,称为“心智化(mentalizing)”或“心理理论(theory of mind, ToM)”。特别是右侧颞顶联合区(rTPJ)这一脑区,可能对这一功能至关重要,因为它在心理化占据重要地位的策略性互动中被激活,比如在扑克中虚张声势、信任游戏中的操纵、检测错误的建议、共识决策以及一般策略性思维。

在这些情况下,社会性大脑区域有哪些功能性贡献呢?目前为止,大家还不太清楚。为了回答这个问题而提出的理论可以分为两大类。第一种是以社会为导向的,侧重于这些区域可能执行特定于社会背景的认知功能,如生命体的检测、ToM或社会背景的构建。因此,这些理论假设,与某些视觉区域如何进化来代表面孔或身体部位类似,社会行为的进化压力塑造了大脑处理其他人类存在的大脑过程。

第二类是以过程为导向的。它假设在策略互动期间可能会调用社会性大脑,因为这种情况需要特定领域的一般认知操作。同样,不同的理论侧重于不同的操作,例如注意力的重新定向、多模态整合、内部预测模型的更新、反应抑制或反应控制。然而,所有理论都假设社会性和非社会性情况都可能需要这些操作来进行非习惯性的、需要注意的行为控制。当一个人与其他人互动时通常会出现这种情况,但在非社交环境中也可能是需要的(例如,无效提示或no-go反应)。

这两种观点并不相互排斥。例如,社会背景构建理论提出,在非社会背景中,rTPJ仍然可以参与构建“虚拟”社会背景,这可能反映在人类将无生命的过程拟人化的趋势。因此,关于社会性大脑功能的大部分争论已经从研究“纯粹的”社会特异性转移到了研究定义可以与社会背景共存的预测性问题。然而,即使是心理化这个概念,其过程也不是明确的。

在策略性互动的过程中,需要解决的关键问题之一是环境(这里的环境其实就是情境,是所处的实际状况)是否具有反应性,以及反映的程度。从形式上讲,反应性是指所处情境(例如另一个人的行为)受个人行为的影响。这对于策略互动中的学习过程尤为明显。例如,认知层次理论假设玩家使用不同程度的策略来预测对手的行动并赢得比赛。为了击败依赖一阶信念的对手(即跟踪选择频率来预测“对手会做什么?”),必须在二阶信念的水平上进行心理化(即模拟“我的对手认为我会做什么?'',这里你可以把阶数理解为你在第几层,比如“我预判了你会预判我的预判”,这是在第三层)。这些策略通常需要学习和信念更新过程来控制自己行为的频率和顺序,从而影响对手的策略。

这种过程可以在强化学习框架中表征为在观察结果时更新行动值。其他研究集中于人们如何根据对手过去的行为和推断出的对手信念更新未来对手选择的估计概率。这两种类型的学习机制都被认为是由社会性大脑网络和一般奖励处理区域实施的,根据学习者正在更新的内容(奖励预测误差[reward prediction error, RPE]、动作值更新或信念更新)而略有不同。然而,特定区域的确切功能专门化仍不清楚,我们对这些机制在社会与非社会环境中,或在不同的计算需求下(如处理反应性环境)如何使用知之甚少。

例如,虽然rTPJ活动似乎是在竞争的社会背景下跟踪一个人自己的行为对对手的影响的能力所必需的,但在非社会背景下也可能需要与反应性相关的计算。人类经常与非社会性物体互动,这些物体会根据生物学规则(例如,狩猎和耕作期间的动物,攀登期间的弯曲树木)或自然物理(例如,在不同程度上光滑或弹跳的表面上移动)做出反应。大脑使用一般神经计算来处理所有类型的反应性可能是有效的。然而,之前的大多数研究都没有测试社会性大脑区域的活动是否具体反映了互动的社会性,或者它是否实例化了处理环境活动的一般计算过程。

在本文中,作者明确地测试这些模型系列相互之间的一般预测。他们通过在重复策略选择的过程中测量社会性大脑网络中的血氧水平依赖性(BOLD)活动来验证这些假设。这些策略选择在许多不同的维度(视觉输入、与奖励相关的刺激-行动关联、运动输出)上匹配,但不同的是这些选择是否是在社会背景下做出的(即,针对人类对手),以及(社会或非社会)对手是否对被试的行动表现出了反应性。作者要求被试玩一场标准的、稳健的、定义明确的游戏(匹配硬币;图1A),要求他们要么学习和预测人类对手下一次选择的卡片是什么(社会背景,n=31),要么从虚拟纸牌组(非社会背景,n=29)中抽出下一张牌。在这两种情况下,对手或牌组实际上都是由相同的两个人为设定的计算机程序生成的对手模拟的:一个是对被试的行为做出反应的主动“学习器(learner)”(反映了通常用于描述策略性学习情境中的行为的“虚拟游戏”机制),一个是对被试的选择没有反应的被动“定序器(sequencer)”产生的序列,但后者需要根据顺序进行之后的预测(一种常见的运动和感知任务)。

这种方法允许我们将社会性大脑网络中的活动分解为对背景或者说情境(社会和非社会)以及对手是否(反应性和非反应性)做出反应这两个因素,并能检验这两个因素的交互作用。本文发表在Neuron杂志。

图1. 实验设计。

(A) 游戏的收益矩阵。

(B) 2×2 因子设计:被试被随机分为两组,一组在社会框架下进行,另一组玩一副纸牌。每个被试都与由两种计算机算法代表的两个不同的对手(或套牌)进行比赛:定序器和学习器。

(C) 学习器算法使用 0-ToM 策略。定序器算法产生了一系列干扰性选择,但不会对被试的选择做出反应。

(D) fMRI 任务设计。在切换到另一种算法之前,被试对每种算法进行了 19 个试次,总共进行了 228 个试次。新组块的开始用过渡屏幕表示,对手的身份用屏幕边框的颜色表示。

2.结果

行为结果:情境线索策略的使用

作者测试了被试对学习器或定序器算法的选择是否导致了社会背景和非社会背景下不同的预测成功率(即预测正确的比例)。在功能磁共振成像数据集(n=60)和预实验行为数据集(n=20)中,都发现了交互效应(图2A;混合回归模型:fMRI,z=2.27,p=0.02;行为,z=2.57,p=0.01;合并,z=3.2,p=0.001)。

在与学习器进行策略性互动的过程,受试者在社会环境下的表现明显更好(t[78]=3.4p=0.001),而在两种背景中,被试在面对定序器时的表现是相同的(t[78]=0.05,p=0.956)。在非社会背景(t[37]=1.335,p=0.19)和社会背景(t[41]=﹣1.49,p=0.14)条件下,定序器和学习器的表现没有差别。这说明,在具有反应性加工特效的策略使用在有社会背景时效能更高。

图2.行为结果。

(A)左侧是按算法类型和社会背景划分的成功率(十字,被试平均数;圆点,单个被试)。右侧是成功率的混合效应逻辑回归(因为是成功还是不成功,二分变量,属于伯努利分布,使用混合逻辑回归来定义模型)中算法×背景交互的固定效应系数。误差棒表示s.e.m.

(B)顶部是来自模型的固定效应系数,将个人成功率回归到个人选择模型系数(自己和对手在先前试次t-1和t-2的选择对当前试次选择的影响)。误差棒表示s.e.。底部是与学习器为对手的k和行为成功(成功率)之间的相关性(皮尔逊相关)以及与定序器为对手的γ和行为成功之间的相关性(皮尔逊相关)。

(C)按对手类型(定序器与学习器)和背景类型(社会与非社会)划分的个体系数(固定随机效应)的分布。

因此,结果表明,社会背景暗示了一种特定的计算策略,这种策略有利于应对反应性对手,这与之前的行为研究结果一致。为了调查人们在社会环境中可能被提示使用的策略,这篇文章为被试的选择拟合了一个模型,使作者能够区分情境和对手反应性的影响,以及对自己和其他人选择的影响。

他们的实验是这样设计的,每一个对手的算法都可以用一种保证最佳表现的独特策略来对抗。针对学习器,最佳策略是在每个试次中交替选择,这使得选择完全反相关,将每个选择的频率设置为0.5,并防止0-ToM学习器算法利用被试的选择(允许被试赢得80%的试次)。而他们使用的定序器算法的最佳策略则是当算法重复其结果两次时切换选择,被试的当前选择与对手的选择之间也是反相关(被试的选择与两个试次之间的反相关程度较低)。该策略还预测了80%的试次中算法的选择。

为了在一个统一的框架下,确定被试对这些策略的使用,作者使用了回归模型,其中每个试次的选择由被试自己的选择和算法在前两个试次中的选择的线性组合来确定(线性Volterra分解以2阶截断)。这个统一的模型可以量化和比较他人和自我参照思维(一阶和二阶信念)的使用,而无需应用针对每种算法类型优化的两种结构不同的学习模型。

具体来说,逻辑回归通过被试在试次t-1和t-2(自我参照输入)中的选择和对手在试次t-1和t-2中的选择(他人参照输入)来预测被试在当前试次中的选择。在这个框架中,针对学习器的最优策略是最大化自己在t-1中选择的负权重(即切换选择,将该系数标记为k),而针对定序器的最优策略是最大化对手在t-2中的选择的负权重(即选择与对手之前进行的两个试次相反的选择,将该系数标记为γ)。为了便于展示,在图2中将系数符号倒置,使成功的策略实施与成功率呈正相关。

被试的选择与模型预测非常匹配:模型正确获取了71.5% (SD = 6%)的选择(平衡分类正确率)。重要的是,该模型的表现优于标准的专业策略学习模型,例如Q-learning、win-stay-lose-shift、影响学习(influence learning)和基于马尔可夫矩阵的序列学习模型。

为了量化策略使用对行为成功的重要性,作者对所有个体系数进行了个体成功率回归,按算法类型分离数据(图2B顶部)。正如算法设计所预期的那样,k权重与针对学习器的表现相关(r[78] = 0.77,p < 0.001;图2B,左下图)而γ权重与针对定序器的表现相关(r[78] = 0.86,p < 0.001;图2B,右下图)。回归还证实,在社会背景中,对于学习器表现的提高伴随着k参数的显着增加(图2C;混合效应回归,社会vs非社会,z = 4.6,p < 0.001)和γ参数的减少(图2C;混合效应回归,z = 2.76,p = 0.006)。对于定序器来说,社会背景不会导致权重之间出现任何显着差异(图2C;混合效应回归,对于k是z = 0.28,p = 0.78,对于γ是z = 0.45,p = 0.65)。行为成功与特定策略的情境之间的联系得到了证实,在两个对手之间(即面对学习器和定序器时)表现出最大成功率差异的被试也表现出k和γ参数之间的最大差异(r[59] = 0.82,p < 0.001 )。

这些结果表明,在社会背景中竞争时,被试更看重二阶信念(被建模为k参数)(图2C)。在社会背景下,对学习器更好的表现似乎反映了特定的基于模型的策略的使用,该策略非常适合于针对该算法。因此,社交背景的存在可能会提示由社会性大脑实例化的专用神经计算。

fMRI:社会性大脑中的活动反映了背景和算法类型

为了测试社会性大脑中的活动是否仅包含有关社会背景的信息,或对手算法的反应性/非反应性属性,或两者兼有,作者进行了广泛的感兴趣区域(ROI)分析。使用自动元分析工具NeuroSynth定义了社会性大脑网络的先验ROIs,从而产生了rTPJ和lTPJ、rTP和lTP、dmPFC和楔前叶的功能mask(图3A,现在非常受欢迎的功能mask定义方法)。鉴于先前的结果表明奖励结果处理区域在策略行为中的作用,作者还将伏隔核纳入最可靠地被奖励激活的区域。

图3.无模型假设下的功能磁共振成像结果。

(A) NeuroSynth元分析使用术语“心理理论”确定的社交大脑网络的感兴趣区:左右颞顶联合区(TPJ)、左右颞极(TP)、背内侧前额叶皮层(dmPFC) )、楔前叶和伏隔核作为控制奖励区域(n. ac.)。ROI显示为从z =﹣25到z = 55的轴向切片中。

(B)混合效应模型系数的t值与反馈期间的因变量BOLD信号beta值估计(与基线神经活动的简单对比)和代表八个条件(在社会和非社会背景下对学习器和定序器对手的胜负)及其相互作用的独立虚拟变量的映射。*p < 0.05和**p < 0.01。黑框表示p(FDR校正) < 0.05。

(C)左上图:最大强度投影(MIP):在学习器>定序器条件下,显著激活的反馈对比区域覆盖在大脑模板上。

中上图:用于奖励反馈(赢>输)和社会背景(社会>非社会)之间交互的MIP。

右上图:用于奖励反馈(赢>输)和算法类型(定序器>学习器)之间交互的MIP。

左下图:TPJ中的簇的MIP,由左上和中上图对比度结合产生。所有MIP显示的阈值(FWE)<0.05,基于排列的FWE校正在聚类水平产生的TPJ中簇的最大密度分布,簇形成阈值(CFT)为p = 0.001。

右下图:TPJ连接簇(在左下图中)和从NeuroSynth“心理理论”元分析生成的mask(在A中)之间的重叠。

(D)机器学习解码分析的交叉验证预测精度,按条件标签(算法类型和社会背景)和ToM区域划分。

与之前的结果一致,本文也将分析重点放在结果信号上,也就是输赢产生的反馈上面去。这样的结果信号在大脑中无处不在,具有高信噪比,对于非社会和社会性的学习都是必要的。这三个特征使得这些信号特别有可能编码他们任务的属性,比如社会背景和算法类型,以及这些条件与奖励的相互作用(仅在反馈阶段显示并形成后续行为)。

作者使用线性混合效应模型(图3B)量化了背景、算法和结果(以及它们之间的交互作用)对反馈相关的ROI BOLD信号的影响。这一分析证实,所有领域对结果都有强烈的反应(赢vs输,p<0.001;t统计见图3B)。然而,最关键的是,与定序器对手相比,被试与学习器对手玩游戏时,几乎所有的社会性大脑区域都被更强烈地激活(所有p[FDR]<0.05;见图3)。唯一的两个例外是楔前叶(t[538]=0.92,p=0.36)和伏隔核(t[538]=﹣0.65,p=0.51)。值得注意的是,社会背景本身并没有导致整个网络的不同激活(对于楔前叶,t[178]=﹣1.69,p=0.09;对于所有其他区域,t<0.69,p>0.49)。这表明,处理情境中的反应性是社会性大脑区域对行为控制的核心计算贡献。

作者的分析还显示,社会性大脑网络中不同区域的反应模式中存在功能性分离。rTPJ呈现出一种复杂的模式:它不仅是对学习器与定序器算法反应最大的区域(t[538]=5.7,p<0.001),而且还显示了社会背景与算法(t[535]=﹣2.06,p=0.04)和奖励(t[535]=2.94,p=0.003)的交互作用。这种模式显然让人想起在行为数据分析中观察到的交互效应(图2A)。在大多数其他区域没有观察到这种交互作用,包括dmPFC(t<1.69,p>0.1),它只对对手类型有反应。只有楔前核(t[535]=4.02,p<0.001)和伏隔核(t[535]=2.38,p=0.02)显示出不同类型的社会背景与奖励之间的相互作用。

值得注意的是,背景操作是在被试之间进行的,因此相应的分析具有比算法操作更低的统计能力。然而,弱效应大小表明,即使收集了更大的样本,关于社会背景效应存在的统计推断也不会改变。从所有分析中使用的主要7个ROI中提取的beta值对于社会和非社会背景之间的差异显示出的效应量<0.13。使用60名被试和被试内设计,只会将检测这些效应大小的能力增加到0.17,仍然不会产生任何显著的效果。唯一的例外是楔前叶(p=0.23,效应大小=0.31);然而,这种差异也可能是与报告的结果的相互作用所驱动的。被试显然相信实验后问卷确定的社会背景框架。然而,作为额外的稳健性检查,作者重复了他们的分析,并通过社会信仰指数(SBI)排除了14名不太相信社会/非社会框架的被试。他们再次发现所有七个ROI中社会和非社会背景之间的BOLD活动没有差异(p[FDR] > 0.5),证实这些区域中BOLD信号缺乏差异不是由于实验中计算机策略的潜在失败导致的。他们还发现,对于定序器(r =﹣0.1, t[58] =﹣0.78, p = 0.43)和学习器(r = 0.18, t[58] = 1.4, p = 0.17)对手(在专门研究社会/非社会群体时没有相关性),SBI与表现之间没有显著相关性。这表明研究的结果,特别是缺乏明确的神经社会背景效应,并不是由于两种背景下对对手的信念不同所造成的。

作者在探索性全脑对比分析中获得了类似的结果(图3C):ToM网络中的活动并不受到社会背景的优先驱动,而是与背景的反应性有关(学习器>定序器者对比)。然而,在rTPJ中,解决这个问题所需的神经计算似乎受到社会背景的影响(图3C;背景与结果之间的相互作用)(t[56]=﹣5.1,MNI峰值x=31,y=21,z=50)。唯一对战胜定序器有更强反应的区域是社会性大脑网络之外的区域,在顶内沟区域(IPS;t[59]=4.5,MNI峰值x=42,y=42,z=48),之前有研究发现这个区域参与序列预测

为了巩固研究结果,作者对一段程序/对手/结果水平上的ROI BOLD激活进行了稳健的样本外机器学习分析。这项分析预测了实验条件(算法类型和背景类型),使用神经beta系数来预测结果的胜负,该系数在ROI内的所有体素(按信号强度加权)上平均作为模型特征。

与主分析结果一致的是,社会性大脑中与结果相关的活动包含关于社交背景和算法的信息(图3D;算法:63.3%,p=0.008;背景:61.6%,p=0.021),不同区域之间存在显著差异。rTPJ是两个标签都能被显著解码的唯一区域(算法:59.1%,p=0.03;背景:65%,p=0.02)。对于dmPFC(和两个颞极),只能解码算法,而不能解码背景(背景:45%,p=0.71;算法:63.3%, p=0.003)。相反,楔前叶的活动只能用于解码背景,而不能解码算法(背景:65%,p=0.03;算法:56%, p=0.09)。社会背景和算法都无法从伏隔核结果相关活动中解码(背景:51.6%,p=0.41;算法:51.6%,p=0.33)。这些结果进一步表明,社会性大脑网络主要执行处理背景反应性的计算,但rTPJ在社会背景对这种计算策略的提示方面起着特殊的作用。

功能磁共振成像:社会性大脑网络中的活动反映了不同的计算专门化

在确认ToM网络中的神经信号受社会背景和算法类型调制后,作者检查了与评估和学习相关的基于模型的计算。为此,作者首先确认了在选择阶段(而不是结果阶段)观察到的BOLD信号编码了模型的预测选择值。与之前的发现一致,选择期间所选选项的模型预测值在腹内侧前额叶皮层(vmPFC)(峰值在MNI x =﹣2, y = 56, z =﹣5, t [59] = 6.1, p[SVC] = 0.0002)。这为作者的行为模型提供了进一步的神经证据。接下来,他们检查了从文献中得出的不同学习信号,有人提议用这些信号索引可能指导策略互动中的行为的不同学习过程。这种分析的动机是在当前的背景下重复交互并且没有关于对手的先验知识,被试需要从他们的观察中推断对手的策略。作者选择了几个完善的通用变量来获取在这种情况下对他人行为的了解、反映行为值更新的信号以及对手对被试行为的反应的动态指数。通过四个基于模型的回归器对这些过程进行索引,作为反馈阶段BOLD活动的参数调节器:

(1)一个奖励预测误差(RPE),它量化了从预期奖励获得的偏差;

(2)动作预测误差(APE),它表示观察到的对手动作与该动作的预期概率相差多少;

(3)观察到的对手反应的动态组块水平估计,通过建模对手当前的选择受被试过去行为指导的程度来估计(使用同样的模型也用于建模被试的行为,但现在适合对手的行为);

(4)选择值更新的绝对强度。

标准RPE (奖励预测误差)信号在社会性大脑的所有ROI中表示(图4A)。通过构造,该指标与奖励结果(赢/输)密切相关,因此该结果与无模型分析中已经描述的结果编码相关(图3B)。然而,作者还发现楔前叶中两个背景之间RPE的编码存在显着差异(t [51] = 2.2,p = 0.03)。在rTPJ中,BOLD活动仅在社会背景下与RPE相关(但背景之间的差异不显着)。该结果反映了rTPJ中的无模型活动模式,对社会环境中的结果有更明显的反应。

对APE (动作预测误差)的分析揭示了社会性大脑区域之间的进一步分离。在这两种情况下,dmPFC、lTP和楔前叶都显示出与该预测因子的显着相关性(p[FDR] < 0.05)。然而,在数字上,dmPFC在非社会条件下表现出更强的动作PE编码(图4A;t[30] =﹣3.2,p[FDR] = 0.01),而楔前叶在社会背景下与APE表现出更强的相关性(图4A;t[30] =﹣3,p[FDR] = 0.02)。然而,在这两种情况下,两种背景之间的差异并不显着。值得注意的是,这两个区域都与APE呈负相关;因此,这些ROI活动的增加表明所选择的策略是正确的,而不是指示观测到的偏离预期行动的错误信号。

图4.(A)基于模型的学习和评估信号分析。反映基于模型的分析中包括的参数调节器的系数的个体神经beta的组水平测试的t统计,按社会(S)和非社会(NS)背景划分。这些调节器包括符号奖励预测误差(PE)、动作PE、反应性指标和选择强度值更新。*p<0.05和**p<0.01。黑框表示p(经FDR校正)<0.05。

(B)策略使用的强度与dmPFC和楔形前的活动有关。来自混合效应模型的t统计数据将策略使用的行为指数(k和γ)回归到结果阶段的beta估计值,按算法类型和背景进行划分。*p<0.05和**p<0.01。黑框表示p(经FDR校正)<0.05。

(C)C中关键结果的跨学科图解,显示个体神经beta值(反馈阶段的BOLD反应)和个体系数之间的相关性。每个点代表一个被试;r表示皮尔逊相关性。(D)rTPJ连通性灵活地取决于算法和背景。使用rTPJ作为种子的功能连接性PPI分析的t值图,展示了条件(赢与输、学习器与定序器、社交与非社交)主效应及其相互作用。*p<0.05和**p<0.01。黑框表示p(经FDR校正)<0.05。

在这两种情况下,rTPJ中的活动均未显示APE编码,而是与反应性测量显著相关(t[59]=3.8,p[FDR]<0.001)。通过背景分析,作者发现了左TPJ和双侧颞极中反应性检测的证据,特别是在非社会背景中(图4A)。这些结果表明,TPJ和TPs可能在这种反应性令人惊讶的情况下(即在非社会环境中)最强烈地参与反应性检测。请注意,这些分析再次与无模型研究结果一致,即在非社交环境中,这些区域也对学习算法表现出更强的反应(图3B)。

最后,分析表明,绝对动作值更新与社交大脑区域的活动无关,无论是在社交还是非社交背景下(图4A),绝对动作值的更新都与伏隔核的活动相关(t[59]=4.27,p[FDR]<0.001)。

总体而言,这些结果与之前的无模型分析基本一致。最值得注意的是,他们认为dmPFC更多地参与到预测对手行动的特定策略中,而rTPJ似乎最关心对手反应程度的对于背景特定的信号。此外,作者测试了分析检测到的社会性大脑区域中与结果相关的神经信号是否确实与行为相关,特别是在与被动或被动的对手比赛时使用特定的策略。在行为分析中,发现被试在社会背景中对学习器的表现更好。作者调查了个体被试在玩这两种算法时的k和γ权重是否与预先定义的社会ROI中与结果相关的BOLD活动相关。对于这些区域中的每一个,作者运行了一个混合效应模型,在反馈期间针对BOLD活动的每个对手在每个程序中回归选择权重(k和γ)(图4B)。结果证实,社会性大脑网络中的神经计算与将二阶信念结合到行为中有关:几个区域中的BOLD活动与针对学习器对手的特定策略相关(参见图4B的t统计数据)。具体而言,在社会背景中与学习器互动期间,dmPFC活动与k(t [89] = 2.7, p = 0.008)正相关,与γ(t[89] =﹣2.3, p = 0.02)负相关(图4C ),表明该区域在增加对反应算法最优的策略的权重方面发挥作用(支持内侧前额叶皮层[mPFC]可能在策略交互过程中指导选择的想法)

。此外,在dmPFC(混合效应回归中的交互作用项,t[174]=2.25,p=0.03)和楔前叶(t[174]=2.48,p=0.01)中,k与BOLD活动之间的相关性确实是特定于社会和非社会背景的。因此,尽管rTPJ可能专门用于针对反应性算法的最佳策略的社会背景提示,但dmPFC可能更多地参与实施这些策略以在必要时控制行为。

fMRI:当与反应性对手比赛时,rTPJ显示出与奖励区域更强的功能耦合

为了研究社会性大脑网络中的功能整合,作者在不同的实验环境中对rTPJ如何与其他社会性大脑区域和伏隔核相互作用进行了探索性功能连接分析。作者选择rTPJ作为种子区域,因为它是唯一显示不同反应性和不同社会背景之间显着交互的区域,与在行为数据中观察到的社会背景提示模式非常相似。这表明rTPJ可能在指导基于背景和结果信号的社会性大脑网络中实施的策略使用方面发挥特殊作用。因此,该分析综合考虑了影响大脑活动的所有实验因素(见图4D)。

在赢vs输的结果中,大多数社会性大脑区域与rTPJ的连通性确实增加了,包括dmPFC(beta= 0.12,t[59] = 4.44,p[FDR] = 0.0004)和rTP(beta = 0.12,t[59] = 3.84,p[FDR] = 0.001),与算法类型和背景无关(t[59] < 1.3,p[FDR] > 0.31)(图4D)。这证实了社会性大脑网络中假设的紧密整合,rTPJ将行为相关的结果信息传达给相互关联的区域。

对于rTPJ和伏隔核的连通性(beta= 0.01,t[59] = 0.42,p[FDR] = 0.75),没有明显的普遍的赢与输相关的增加。然而,rTPJ在与学习器对手赢vs输时表现出与伏隔核不同的连通性(结果与对手的交互作用,t[59]=2.15,p[unc]=0.03,p[FDR]=0.31)。事后分析表明,这一结果主要是由输的结果驱动的(图4D,最后两列;beta = 0.07,t[59] = 3.55,p[FDR] = 0.007)。如果rTPJ活动与心理化的使用(如k索引)有关,并且伏隔核活动将策略信号整合到选择选项的值中,那么当输的结果发出信号表明需要更新错误的基于心理化作用的对手选择预测时,这些连接结果可能反映了rTPJ与伏隔核的特定沟通。

3.讨论

这项研究受到长期存在的假设推动,即社会性大脑网络已经进化为专门支持社交互动,以及仅存在社会背景的fMRI发现经常触发社会大脑区域中增加的BOLD反应。另一方面,越来越多的研究将这些激活与特定的计算操作联系起来,如最初为非社会环境开发的决策和学习框架的计算模型中的形式化。然而,TPJ、楔前叶和dmPFC在这些情况下指导行为的具体功能贡献仍然是一个有争议的话题。基本问题仍然是这些区域是否确实专门用于社会行为,或者它们是否与其他非社会过程和计算共享其功能。

作者的结果为解释标准实验室ToM任务的结果提供了一个新角度,ToM任务通常用于测量当被试不得不对他人的心理状态进行推理、从他人的角度出发或推断社会行为时社会大脑区域的活动。尽管这些任务本身通常不涉及直接的社会互动/反应性,但它们通常意味着需要模拟的反应(例如,当一个人必须判断某人对另一个人的反应时)或归因于非社会对象。在新方法的基础上,仔细设计非社会控制条件(以及潜在的计算模型)可能会很有趣,这可以提供一个更机械的观点,即反应性处理如何成为在此类经典实验室任务中观察到的许多大脑反应的基础。

需要注意的是,一些涉及社会性大脑激活的情况不一定涉及反应性环境。值得注意的例子包括观察性学习和学习其他人的偏好、能力和价值观以及慷慨。将这些结果与作者的发现相一致的一种潜在方法是假设大脑可以模拟多种社会选择的反应(例如,通过想象他人对个人选择的反应)。反应性模拟在引发社会性大脑活动中的这种作用可能类似于在知觉和运动大脑系统中的发现,仅仅对知觉或动作的模拟也导致与观察或执行的知觉和动作的处理相当的活动。其他可能性是反应性处理只是尚未确定的更复杂计算的一部分,或者社会性大脑的某些部分可能不仅处理反应性,而且还处理社会互动的其他方面,正如我们对功能专业化的发现所暗示的那样的不同区域(见图4A)。我们还认识到,我们的研究只在一个特定的实验游戏环境下解决了一个关于社会性大脑的一般问题,并针对两种特定类型的算法进行了研究。然而,作者的实验设置和算法反映了在策略性互动研究中观察到的典型行为模式,并旨在反映日常生活中普遍存在的行为。因此,他们的发现是否也适用于其他社会环境(如协作行为)还有待确定。

社会性大脑区域的功能分离

社会性大脑网络可能不像通常想象的那么单一,因为其区域的参与程度总是不同的。当然,许多区域(特别是TPJ和dmPFC)在处理自我-其他表征、社会目标和价值观以及其他相关功能的过程中表现出类似的反应特征。然而,许多研究仍然发现TPJ具有独特的功能作用。对于dmPFC,大量证据表明,即使在非社会环境中,该大脑区域在选择替代模型和反应方面也发挥着关键作用。此外,在meta分析中确定的另一个核心社会大脑区域楔前叶也涉及许多背景,例如基于价值的决策、记忆、空间导航和默认网络的活动。尽管所有这些发现都表明TPJ、dmPFC和楔前叶可能对行为控制做出不同的功能贡献,但它们在社会环境中的确切功能特征仍然是一个悬而未决的问题。

研究结果提供了重要的新信息,因为它们支持TPJ、dmPFC和楔前叶之间的明确功能分离:尽管社会性大脑的几乎所有区域都对环境中的反应性做出反应,但rTPJ对结果的反应在社会和非社会背景之间有所不同,并且当被试在反应性环境中行动时,与伏隔核表现出更强的连接性。相比之下,dmPFC和楔前叶的活动都反映了对抗反应性对手的行为策略,而rTPJ活动则没有。这种反应曲线的差异也反映在基于模型的分析中,这表明dmPFC编码的主要信号确认对手动作的预测有多正确,而TPJ对对手的反应性反应最强烈,这令人惊讶。因此,他们的结果表明,社会性大脑功能在检测反应性、计算动作值更新和表示APE方面存在特定的分离。这似乎与之前的提议一致,即在社会互动中,TPJ可能正在编码背景更新、临时目标和其他即时相关变量,而dmPFC可能作为一个枢纽,存储其他个人的长期表征并指导一般的行为策略

rTPJ的编码依赖于社会背景

研究结果表明,TPJ根据社会背景对结果进行不同的处理并更新相关的信念。这意味着rTPJ在社会网络中具有自下而上的处理作用,该区域处理的是逐个试次更新而不是长期行为策略。因此,研究结果进一步完善了先前关于rTPJ在社会和非社会环境中的功能贡献的建议。也就是说,研究结果可能与rTPJ的关联模型和背景更新模型所提出的假设不一致,即社会背景只是表明复杂性增加,因此需要部署额外资源。关联模型预测rTPJ中的活动应主要由社会环境而不是计算需求驱动。背景更新理论预测rTPJ活动应该反映在实验的所有条件下类似地存在的域一般计算(背景模型的更新);因此,该理论不会预测社会和非社会环境之间的任何差异活动。

rTPJ的功能专业化在连通性水平上也很明显:与定序器相比,当被试面对学习器时,rTPJ是唯一显示与伏隔核连通性增加的区域。尽管连通性分析无法确定方向性,但该结果可能表明伏隔核可能会利用来自rTPJ的输入来更新其在结果处理过程中的预期和/或rTPJ中的社会相关计算可能由腹侧纹状体中的预测误差信号触发。此外,作者观察到左侧TPJ和rTPJ之间的连接中的逐个结果交互(但是,该结果在FDR校正下没有达到显著性),以及dmPFC-rTPJ连接中的三重(由算法得出的结果)交互,进一步支持社会网络中区域之间的功能分离。

dmPFC参与反映了自上而下的策略性实施

与rTPJ和楔前叶不同,dmPFC的整体活动对社会环境几乎不敏感,主要反映对手类型。这一观察结果与该区域参与策略性决策的先前描述一致。在人类中,dmPFC参与了策略游戏(等级信念的猜数字游戏)中的等级信念、评估和基于他人信念的学习、整合经济环境中的社会信息以及二阶学习的使用。在猴子身上,已发现该区域编码的信号与猴子在非社会环境中预测计算机对手学习的倾向相关。只有显示这些信号的猴子才能在竞争中胜过简单的0-ToM算法。作者的“非社会学习器”条件基本上模仿了这项人类研究,它表明dmPFC跟踪了基于特定策略预测的对手动作的准确性。因此,研究结果进一步巩固了dmPFC对维持这种行为的重要性策略。

具体来说,研究结果支持dmPFC可能控制特定行为策略的持续使用的观点,正如之前的研究结果所表明的那样,该领域的活动与被试使用特定心理化策略的强度指数相关。请注意,rTPJ中的活动并未反映这些长期变量,主要表现出对不断变化的结果事件的瞬时反应。两个社会网络区域之间的这种根本区别可能类似于注意力网络中的功能分离,顶叶区域更多地参与短暂的自下而上的处理,而额叶区域则参与持续的自上而下的注意力集。从解剖学上讲,这种区别也可能反映出rTPJ与顶叶皮层中的感知区域的联系更加紧密,而dmPFC与与认知控制以及行动选择和政策评估相关的区域联系更加紧密。

总结:

本文使用一个巧妙的实验分离了社会/非社会因素和反应/不反应因素在特定情境下对人类策略性行为的影响以及有效地回答了社会性加工脑区如何对不同情境下的策略性行为进行支持。从行为学结果看,在面对有反应性的对手的加工策略使用是在有社会背景时效能更高的,这可能表明,社会性背景信息对于特定策略的使用是有明显意义的。作者在之后的任务态激活分析中,进一步确认了这一点。并且,作者发现,在社会互动中,TPJ可能正在编码背景的更新、临时目标和其他即时相关变量,而dmPFC可能作为一个枢纽,存储其他个人的长期表征并指导一般的行为策略。表现出社会性信息加工脑区在功能上的分离和计算的专门化。

其实,在当下,以ToM功能障碍为特征的缺陷是各种疾病的核心症状,尤其是自闭症谱系障碍。原则上,此处使用的计算ToM方法可用于更好地了解患有此类疾病的个体的神经认知特征。事实上,作者方法的一个行为变体已经表明,在自闭症患者中,用于处理反应性的认知计算对背景线索不敏感。除此以外,对于一些成瘾患者而言,ToM的功能障碍也是明显的。因此,本文的发现可能对临床研究来说也是有意义的。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值