反映知觉决策形成的动态神经信号的发现具有重大意义。这些信号不仅能让我们详细研究决策过程的神经执行过程,而且还能揭示大脑决策算法的关键要素。在很长一段时间里,这些信号只能通过侵入性记录来获取,而非侵入性记录技术的局限性阻碍了人类神经科学的进展。然而,最近研究方法的进展,使越来越多的研究人类大脑的信号可以动态的跟踪决策过程。在本文中,我们强调了人类的神经生理数据是如何被用来研究形成决策的多个处理水平的新见解,并为能够解释个体内部和个体间差异的数学模型的构建和评估提供信息,并研究辅助流程如何与核心决策过程相互作用。本文发表在Annual Review of Neuroscience杂志。
1.人类大脑中决策形成的神经信号
知觉决策包括将感官信息转化为判断、信念或行动。它们已经在不同的学科中得到了深入的研究,因为它们为研究大脑机制和行为现象提供了一个易于处理的测试平台。研究发现猴子大脑某些区域的神经元表现出的活动与感官对决策约束的积累一致,其方式类似于长期存在的数学积累约束模型。(例如,用于扫视的侧顶叶(LIP)和额叶视区以及用于伸手的背侧前运动皮层(PMd),在整个思考的过程中,随着证据的强度,呈现出峰值率的增加)。自这些发现以来,这种动态过程已经在猴子大脑的多个区域和啮齿动物中被观察到。
与猴子和啮齿类动物的神经生理学相比,由于低分辨率、无创记录方法固有的局限性,追踪人类神经决策过程的动态通常更具挑战性。然而,近年来一些方法论上的进展,从新的信号处理技术和基于模型的方法,到相关神经活动的任务设计,都在很大程度上成功地克服了这些限制(图1)。这些方法上的进步使得人类的神经生理学研究在理解决策的神经基础方面取得了越来越多的进展,这既补充又扩展了通过对动物的侵入性记录获得的知识。在本文中,我们着重介绍了最近在三个特定领域对这类进展的贡献:阐明介于感觉和行动之间的关键处理水平;决策相关的数学过程模型的构建与估计;以及描述辅助过程在调节适应性决策形成中的重要作用。
图1识别与非侵入性记录证据积累一致的神经信号
图1:(a)为了解决功能成像低时间分辨率的问题,Ploran等人设计了一项物体识别任务,在该任务中,通过呈现出现在数秒内的刺激来延长决策形成期。研究人员发现,来自13个大脑区域网络的血氧水平依赖(BOLD)信号符合理想预测,表现出峰值延迟,与报告的物体识别时间同步变化。
(b)当视觉运动检测任务(yes vs. no)中的选择选项被映射到左手和右手的运动时,证据积累动力学反映在运动准备随时间的累积(左),通过运动皮层(M1)对侧与同侧的频谱脑磁图功率差异来指示最终执行的运动(右)。
(c)同样地,当参与者执行映射到左手和右手的运动方向鉴别时,不同的运动准备(top)也反映在偏侧化准备电位(LRP;对侧和同侧运动前脑区信号的差异)。通过在相干运动前引入非相干运动,消除了典型模式中由突然亮度瞬变产生的诱发电位。这为另一种与事件相关的成分提供了一个清晰的视角,该成分表现出依赖证据的累积动力学,即中央顶叶的正性成分。
(d)需要对按顺序呈现的离散标记(例如方向)求平均的任务,可以通过对决策证据的增量还原脑电图信号来详细检查决策处理的时间动态过程。通过这种方法,发现证据样本的神经编码及其对最终选择的权重在delta(~2Hz)频段时间尺度上呈现有节律地波动。这种节律性与标准决策模型中的假设相反,即连续的证据样本以恒定的速率整合。
(e)使用机器学习的分类技术,在人类脑电图中可以分离出证据依赖的累积信号。在一个这样的应用中,在一个运动辨别任务中最大限度地区分了高相干性和低相干性试验。因此,分类精度(左,Az)和投射到该维度(右,y)上的活动成分的动态可以用高时间分辨率来跟踪。
(f)基于价值和感知决策(PDM)的后侧电极γ频带脑电活动表现为有界累积动力学。在这种情况下,通过频谱振幅时间过程识别信号,并根据行为拟合的有界证据积累模型模拟预测响应来对齐动力学。
2.知觉决策的多加工水平
大多数数学决策模型是通过一个单一的证据积累过程来捕捉行为模式,与之相反,决策背后的神经生理过程似乎涉及许多神经信号和回路。与决策相关的活动,最常见的识别方式是选择性预测,在猴子和啮齿类动物大脑的各种区域中已经观察到这一现象,最近,在人类大脑的颅内记录中也观察到了。随着选择预测大脑区域的多样性,解析它们独特的功能贡献也存在挑战。信号之间有一个基本的区别是,将决策所依据的每时每刻的感官信息——证据——和决策变量进行编码,这些决策变量是在整个思考过程中,基于现在和过去的证据而演变的,最终以一个选择结束。即使是这样一个明显的直接的分类在实践中也很难建立,因为这些信号类型通常在时间上紧密一致,并且与选择表现出类似的相关性。此外,在非侵入性的整体大脑记录中,典型的任务刺激会引发多种感官反应成分,其中许多可能与手头的决定无关。
近年来,已经开发了一些方法,可以在各种无创记录模式中选择性编码,将与选择相关的感觉信息信号隔离。例如,通过将这些特征的单试次的变化与标准调谐函数进行卷积,并将它们与脑电图(EEG)数据进行回归,或者通过闪烁刺激唤起稳态反应,就可以获得定向数据。使用这种方法的研究越来越强调,先验知识、选择的历史和时间压力等因素也会产生显著的感官调节。与此同时,脑磁图(MEG)和脑电图(EEG)研究已经成功地分离出两类功能上截然不同的决策变量信号,它们表现出与动物单位记录中观察到的信号相似的动态特征:它们在思考期间逐渐建立,其速率与证据强度成正比,在运动时达到峰值,并可以用于预测选择的准确性和反应时间(RT)。第一类信号类似于猴子身上的效应选择信号;具体来说,运动准备的经典特征,如mu/beta波段脑电/脑磁活动的降低(图1b),在整个决策形成过程中逐渐形成,直至达到特定动作的阈值水平。第二个是中央顶叶正波(CPP),最近的研究显示了几个有趣的特征,可以将其与其他颅内或颅外记录的决策信号区分开来(P300作为证据累计的过程)。这个信号具有非常多用途的,在任何感觉形态的任何感觉特征中,只要那个特征是被决定的,它就会表现出相同的累积动力学。早在CPP之前,就已经证实了另一种与事件相关的电位成分—P300或P3b—被目标以任何方式诱发,与刺激概率成反比,并与时间和准确性共同变化。P3b在认知任务中无处不在,且对大脑疾病极其敏感。
CPP(中央顶叶正波)还有其他的关键特征可以将其与效应选择性决策信号区分开来。至关重要的是,CPP可以追踪证据积累,即使在不需要明显动作和运动准备信号沉默的情况下。此外,传入的证据在相当长的时间内调节CPP的积累(>100毫秒),然后在头皮记录的运动准备信号中反映出来(图1C)。最后,这两个信号表现出本质上不同的策略:对侧mu/beta活性在反应执行时达到阈值水平,而与RT、难度或先验知识无关,但根据时间和先验概率限制,在两个半球的起始水平会发生系统性变化。最近的工作也强调了mu/beta运动准备信号在其形成过程中表现出一种证据独立的、暂时性增加的成分,这将会逐渐减少达到运动阈值所需的累积证据量。相比之下,CPP在相同的实验条件下,其起始水平和证据无关成分均无变化,但其选择前振幅随着RT和刺激概率的增加而系统性地下降。因此,CPP(中央顶叶正波)似乎编码了一种纯粹的、运动独立的累积证据表征,其在反应执行(commitment)时的振幅由运动水平上的策略影响决定。这一解释与最近的证明相一致,即刺激强度的主观评级对CPP振幅的变化非常敏感。
总之,这些研究证实了CPP提供了累积证据的神经参数。然而,我们还不确定这种表征是如何在大脑中产生的,也不知道它在决策过程中扮演的具体角色。一种可能性是,没有单个神经元等效的CPP存在,它产生于各种选择性神经群体的综合活动。如果CPP确实反映了一个独特的过程,那么进一步的问题是,这个过程是否必然是在感觉编码和动作选择之间进行的,还是与更直接的感觉运动路径并行计算。要解决这些问题,最终需要对产生这一信号的大脑区域进行侵入性记录,以及失活和微刺激方案,以建立因果关系。然而,到目前为止,与CPP具有相同的超模态、完全运动独立特性的颅内记录信号在人类或非人类中都没有被识别出来,了解其神经起源仍然是正在进行的研究的重要目标。
fMRI的一些研究比较了涉及不同感觉模式和/或效应器的实验,并确定了一些共同被激活的大脑区域,包括背外侧前额叶皮层、顶叶内沟、额叶下皮层和右岛叶。然而,尽管fMRI具有更好的空间分辨率和覆盖范围,但其较低的时间分辨率妨碍了直接观察证据积累动态,因此,fMRI缺乏坚实的、基于经验的标准,仅基于BOLD反应效应来确定假定的决策区域。
文献中使用了各种各样的标准,在某些情况下,采用了直接矛盾但同样合理的标准。不同的标准和方法会导致所确定区域的不一致,个别领域甚至在不同的研究中具有不同的作用。例如,在一项研究中,下顶叶激活与抽象积累有关,但在另一项研究中与效应选择性积累有关。尽管存在这些问题,fMRI研究在突出候选决策结构方面发挥了有价值的作用,这些决策结构的精确作用可以通过补充技术进一步探讨。最终,揭示决策的基本原理,将需要使用这种成像方法,并与新发现的可以追踪脑磁图/脑电图中人类决策形成的神经动力学的方法相结合。
3.神经信息建模
数学决策模型在决策的基础和临床研究中得到了越来越广泛的应用。在人类神经科学中,一种常见的方法是使用符合行为数据的模型参数估计作为神经生理数据的回归量。这种方法的一个强大的方面是,它允许特定大脑区域的功能作用和信号在一个正式的数学框架内被探索和解释,从而与选择行为联系在一起。例如,Boehm等人使用累积-界限模型来估计响应界限(即起点和界限之间的距离),并建立了与缓慢的、预期的事件相关潜在分量的振幅的相关性,称为关联性负变(CNV)。这一观察结果与作者最初的假设一致,即CNV反映了一个驱动反应阈值降低的过程。同样,Gherman和Philiastides使用了一个决策模型来估计选择的信心水平,以验证脑电图信号成分与信心的关系。作者随后确定了这一特征与前额叶皮层BOLD激活之间的相关性——这一区域之前与选择信心无关。
将行为模型的参数直接应用于神经分析的一个限制是,如果所选的模型不能准确反映大脑实际使用的算法,所识别的大脑区域或信号的功能特征可能会被误解。现在有许多可供选择的决策模型变体,它们有时可以很好地适应行为,但却可能导致非常不同的结论,这一事实强调了这种问题的存在。识别具有良好特征的、时间分辨的决策形成的神经信号提供了一种补救措施,因为它们提供了可以与行为一起使用的无模型测量,以多种方式直接影响模型选择。
首先,神经决策信号可以通过提供一种检测某些算法元素的操作来影响模型的构建,这些算法元素可能很难通过纯行为分析来识别。
其次,在某些神经信号测量和模型参数之间已经建立了直接的对应关系,这些神经数据可能用于直接估计参数值。原则上,施加这种约束将有助于开发能够捕捉更广泛范围的参数和效应的模型,而不会增加自由参数的数量,会增加过拟合的风险。
第三,神经数据也可以在模型验证中发挥重要作用,提供了一种经验测试预测的方法。
在最初构建我们的决策模型时,一个关键的考虑因素是是否包含一个称为紧急性的过程。紧急性是一个额外的证据独立的构建成分,随着时间的推移,它有效地降低了做出选择所需的证据数量。紧急性是一些顺序抽样模型的核心特征,它对我们理解调节速度-准确性权衡的心理过程具有重要意义。尽管对猴子大脑中决策信号的研究已经确定了这些紧急因素,但对于它们在人类决策中扮演的角色,一直存在分歧,因为它们并不关键。Kelly等人发现,甚至在证据出现之前,运动准备信号就开始向阈值水平构建(图2a)。我们以此来反映在证据展示过程中持续增加的紧迫感,这与之前在人类和猴子研究中报告的其他效应一致。通过约束某些参数来匹配相应的决策信号测量值,我们能够在不增加模型自由度的情况下添加这个紧急成分(图2b)。
由此产生的神经信息模型比DDM(漂移扩散模型)更符合行为,并表明某些效应直接与DDM的结论相矛盾(图2c)。最显著的是,神经信息模型表明,在速度压力增加的任务状态下,受试者提高了漂移率(随着编码证据积累的质量而缩放的一个参数),而DDM,像一些以前的模型研究,表明相反。应该相信哪一个?除了常规的模型比较和恢复程序外,我们能够通过检查CPP(中央顶叶正波)中反映的证据积累的动态,为神经信息模型提供一个强大的、独立的验证,这在模型的构建或约束中没有使用。CPP显示的效果与神经模型预测的效果一致,包括在速度压力下更陡的累积速率。事实上,经验CPP波形(图2e)与神经信息模型(图2d)模拟的证据积累的平均动态非常相似,并没有显示DDM预测的时间和累积速率效应的迹象。
图2 使用神经决策信号来构建、约束和验证一个神经信息(NI)模型,用于在低(Easy)和高(Deadline (DL))速度压力下的运动方向决策。
图2:(a)动作准备,反映在mu/beta波段(8-30 Hz)的频谱振幅,在证据提出前约300ms开始建立。这种预期的、证据独立的累积导致在速度压力下的启动水平大大提高。在响应手对侧脑区的mu/beta信号做出反应之前,响应对齐的运动准备(如图所示,与各状态下的平均反应时间一致;右)达到一个固定的阈值水平。
(b)在神经信息模型中,我们假设运动准备中的预期性累积反映了一个证据独立的紧急性成分,该成分在证据提交期间继续线性增长。累积的证据和紧急性被附加地结合在一起,创造运动准备信号,奔向动作触发阈值。
(c)标准漂移扩散模型(DDM)在速度压力下的非决策时间(左)和漂移速率(右)大大缩短,而神经信息模型的存在更少的非决策时间(左;分为累积前和累积后组分)和更陡的漂移速率(右)。
(d)从神经信息模型中模拟的平均证据积累痕迹(不包括紧迫性成分)。
(e)模型构建中未使用的中央顶叶正波(CPP)中捕获的证据积累的经验特征再现了神经信息模型模拟的动力学,并验证了在速度压力下积累开始和漂移速率增强的相似性。
以上的研究增加了使用神经决策信号来验证或直接指导感知决策的过程模型的工作。例如,Cheadle等人评估了一种顺序采样模型,其中自适应增益过程迅速,使应用于证据样本的加权适应于局部感官环境的统计。该模型除了提供了对行为的极好拟合外,还提供了一个关键预测,即每个证据样本对决策变量的影响应根据其与前一个样本的一致性而增加或减少。这种关系在决策形成的功能磁共振成像和脑电图特征中都被发现。在另一个例子中,Fischer等人提出了DDM的多阶段变体,该变体通过提高决策界限、更大程度地抑制分散注意力的信息和更弱的证据积累来解释后行为适应。作者通过展示其模拟的决策变量时间过程与观察到的运动前beta带活动之间的显著的密切对应,使该模型值得信服。
神经信息建模方法在组间和个体间差异的检查中也具有重要的前景。在临床和老年研究中,收集大量的行为数据集通常是不可行的,而这些数据集已经成为建模研究的规范。这是值得关注的,因为当试验数量较低时,具有许多自由参数(如完整DDM)的模型可能提供不可靠的组间参数效应估计,即使数据是从DDM本身模拟的。在这里,神经生理学数据也可以发挥关键作用,表明模型的哪些方面可以受到约束,而无需对相关群体效应的起源进行强有力的先验假设。
为了证明这一潜力,最近的一项研究在研究衰老的影响时应用了一种神经信息建模方法。年长的和年轻的参与者执行两项任务,在这两项任务中,他们连续地监测间歇性目标的刺激,分别定义为对比逐渐减少或从不连贯的运动过渡到连贯的运动。以对比任务为例,老年参与者的表现出人意料地优于年轻参与者,在RT没有差异的情况下检测到更多的目标(图3)。将DDM应用到行为数据中,发现老年人的决策界限升高,以及漂移率增加(图3b)。然而,这些基于模型的观察结果与神经数据中观察到的年龄相关效应之间存在显著差异:CPP或mu/deta运动准备信号的反应前振幅或累积率在组间没有显著差异,在早期视觉反应的感觉证据编码上也没有差异(图3c)。
作为协调模型和神经发现的第一步,这些神经生理学的观察结果被用作约束DDM的边界率和漂移率参数的基础,使其在受试者和组之间保持不变。除了在精简和拟合度之间取得更好的平衡,约束模型提供了关于神经数据的其他特征的新预测,这些特征随后被经验验证。例如,新模型强调了老年人试验间累积率变异的有益减少(图3d),这反映在CPP累积率变异的减少(图3e)和alpha频段活动,表明更稳定的注意参与。在运动识别任务中,组表现出不同模式的模型参数和决策信号差异,但神经信息建模方法会导致相似的推理增益。具体来说,老年人的检测性能较差是因为无约束DDM的边界较高。然而,基于神经决策信号的观察,将边界限制为相等时,反而显示了漂移率的降低,这反过来又被CPP的降低的累积率所验证。这一观察结果促使对神经数据的进一步观察,揭示了相应的后部alpha带活动变异性的差异。后部alpha是一个公认的注意参与标记,表明年轻人在任务表现中可能经历了更大的注意波动。
图3 传统的和神经信息的漂移扩散模型(DDM)产生了明显不同的结果
(a)在检测不可预测的刺激的任务中,年长的受试者比年轻的受试者有更高的命中率(左)和相似的平均反应时间(右)。
(b)传统DDM将这些组间差异归因于年长受试者漂移率和决策界限的增加。
(c)独立于模型的神经信号分析不支持这些预测。与漂移率效应不一致的是,我们观察到,在对比视觉诱发电位(SSVEP,左)与中央顶叶正波(CPP,中间)或运动选择性mu/beta活性(右)的增强率方面,感官证据没有组间差异。此外,尽管DDM预测老年人的决策边界更高,但CPP和mu/beta神经决策信号的反应前振幅没有可靠的差异。
(d)因此,使这两个参数在所有受试者中不论年龄组都相等,就产生了新的差异,即在老年组中漂移率变异性减少。
(e)通过观察老年组CPP累积速率的单试次变异性减少,这一预测差异得到了支持。
神经信息建模在人类数据中的应用还处于非常早期的阶段,鉴于神经数据提供的额外约束,决策形成的许多方面似乎已经成熟。例如,另一个关键的决策过程组件是泄漏,其中过去的证据样本在运行的累积总和中被动态折中。在应用最广泛的模型中,为了简洁起见,漏损被省略了,但它是其他核心特征并且能够解释标准模型所不能解释的某些众所周知的、依赖于时间的精度效应。在一些模型中,泄漏很强烈,以至于时间整合被认为几乎不起任何作用,最近的行为建模和仿真工作表明,许多用于推断整合策略的标准也与不涉及整合的极值检测策略一致。因此,泄漏的一般作用、它的任务依赖性和潜在的战略适应性可能是正在进行的感知决策研究的中心问题,并将受益于神经决策信号测量提供的额外约束。
当然,使用无创记录的人脑数据进行神经信息建模具有内在的挑战,需要持续的检查。与动物神经生理学一样,在必要的时候,指定信号和模型参数之间假定的对应关系的性质,应该被不断地验证和修正。此外,一些参数与神经信号属性有足够直接的对应关系,可以证明修正参数值以匹配那些神经测量值,但其他参数则没有。例如,Purcell和Palmeri通过模拟表明,漂移率的变化可能会导致累积起始时间的虚假的表观差异。在脑磁图/脑电图记录中,信号重叠问题为精确测量决策信号带来了进一步的问题,即使决策信号与模型参数很吻合,也需要仔细的范式设计和分析。有用的措施包括避免亮度瞬变,以消除无关的瞬变诱发电位,并检查RT函数的变化,以帮助分离重叠的信号分量,它还可以提供更详细的信号模式,用于指导、约束或进一步验证决策模型。与许多类型的建模一样,要捕获的数据点越多,对问题的吸引力就越强,但也需要更多的模型开发迭代,以实现对行为和神经信号的精确匹配。
除了这些问题外,神经信息模型在临床或组间研究中的应用还面临一些独特的挑战。其中最突出的是,需要考虑受试者间脑电图信号振幅的变化将部分反映皮层几何形状、颅骨厚度或血管系统的差异,这可能与决策行为没有任何关系。另一个挑战是,为了获得可靠和详细的神经测量,通常必须收集大量的数据,这在临床研究中可能并不总是可行的。这些问题可以通过应用更先进的信号质量增强技术来解决。
4.辅助过程
最近人类神经生理学研究的另一个突出贡献是揭示了控制知觉决策的核心感觉运动回路和一系列关键支持过程之间的交互作用。特别是,研究强调了与冲突和觉醒相关的几个相互关联的系统与决策边界的设置有关。跨越多个物种和神经测量模式的融合数据已经证实,后内侧额叶皮质(pMFC)产生的选择冲突或不确定性表征可以预测未来的行为调整。在人类脑电图研究中,反映在选择额中部theta频带活动中的不确定性信号与即将到来的试验中反应时间的放缓有关,数学建模将其归因于决策边界的短暂提高。因此,前额叶不确定性信号可能在促进更保守的决策中发挥重要作用。
与此同时,人们也在努力识别控制决策界限的神经通路。功能成像和连接分析表明,当检测到冲突时,丘脑下核(STN)参与提高反应阈值。对STN进行深部脑刺激可诱导出更快、更冲动的反应方式,并破坏了pMFC theta频段与未来决策约束调整之间的正相关关系。尽管STN被认为是运动执行的一种中断,但纹状体更大的激活与皮层去抑制和较低的反应阈值有关。例如,连接纹状体和辅助运动区的脑束中白质完整性的变化可以预测个体在增加的时间压力下降低决策界限的程度(图4a)。
与此同时,越来越多的证据表明,弥漫性投射的神经调节唤醒系统支持通过全脑范围的神经增益调节来实现决策边界调整的实例化。在神经网络建模中,全局增益调制已被确定为一种产生紧急信号的合理机制。相应的,线性系统分析表明,与唤醒相关的瞳孔反应在整个决策形成过程中受到持续输入的驱动,并表现出静态和时间依赖的紧急效应,反映了在行为和脑电图数据中观察到的效果(图4b)。一些证据表明,前额叶的不确定性信号是这些与决策相关的唤醒反应的重要驱动因素。
虽然到目前为止的大多数工作都在研究不确定性信号如何塑造未来的行为调整,但由于选择仍在形成,额叶中部θ波活动和与决策相关的瞳孔反应都表现出来,因此它们很好地影响了在线决策过程。事实上,决策θ波反应已经被证明可以预测参与者当前选择是错误的可能性,而瞳孔的非选择反应与先前偏见对新决策的影响的抑制有关。综上所述,这项研究考察了边界调整的神经基础,说明了决策过程的单个参数如何与一组复杂的交互系统、过程和路径承载功能的关系。这些发现为侵入性研究提供了指导,可以进一步建立这些神经回路的更精细的细节,并探索因果影响。
其他的研究已经确定了影响决策过程的其他参数的其他辅助过程。大量人类和猴子的神经生理学文献研究了所谓的目标选择信号,这种信号是在突然发生的、与目标相关的感觉事件后,在早期潜伏期被激发出来的。这些信号主要与空间定向有关,Loughnane等人最近发现,目标选择过程的人类表现发挥了更广泛的作用。具体来说,作者确定了双侧枕颞部反应-它们一起构成了经典的N2pc成分-编码目标相关感觉事件的发生,并通过CPP指示的神经证据积累过程的开始和累积速率预测RT(图4c)。Nunez等人的工作已经证明了N2延迟和模型推导的非决策时间估计之间存在很强的相关性,这与它标志着决策前处理的完成和证据积累的开始的观点一致。令人惊讶的是,Loughnane等人(2016)发现,这些信号很明显,并可以预测RT,即使当参与者监测一个单一的、固定的刺激流,这表明目标选择反应发挥了超出空间定向或干扰物抑制的作用。这些观察提高了大脑依赖于目标选择反应来触发证据积累的可能性。事实上,感觉信息流向证据积累过程的想法已经被纳入视觉搜索的数学模型。
本节所涉及的工作只是人类神经生理学研究的一个说明性子集,探索感觉运动决策过程和其他系统之间的相互作用。不同的研究路线也检查了一系列其他辅助过程的影响,包括:测试难度和主观价值的表征,采样节奏机制,注意力集中和分散的机制,微眼跳,以及注意参与和唤醒中的刺激变化。除了揭示这些重要的影响外,这些研究还产生了一套新的神经指标,可以极大地扩大神经生理学研究的决策场景的范围。
图4三项研究举例说明了人类神经生理学的研究如何揭示了核心决策回路和其他大脑系统之间的关键功能相互作用
(a)用概率图测量的连接纹状体到辅助运动区的脑束的强度(连接概率)与个体间灵活调整反应的能力差异呈正相关。
(b)归一化刺激前瞳孔直径测量(上)显示,当参与者被要求在一个严格的截止时间(DL)内做出反应时,与没有截止时间的情况相比,得分仅作为选择准确性的函数。
(c)当感官证据的出现和位置无法精确预测时,目标选择信号似乎会影响证据积累的时间。当参与者监测两个随机运动斑块中任意一个斑块的相干运动的不可预测周期时,相干运动在对侧头皮部位诱发早期N2分量,该分量具有相干性,并在证据积累的神经特征开始之前立即出现。
5.总结
我们讨论的例子表明,人类神经科学方法和建模方法的进步,导致人类的发现可以补充动物的发现。我们特别强调了人类大脑研究是如何:(a)确定了效应独立的和效应选择的决策信号,(b)开始将这些信号纳入神经信息建模方法,(c)利用非侵入性技术提供的大脑功能的整体观点,以检查感觉运动决策回路和一系列辅助过程之间的功能交互作用。现在,研究人员可以在一个共享的实验、计算和理论框架内,追踪无脊椎动物、啮齿动物、猴子和人类决策过程中类似的神经特征。这种能力反过来又将促进人类和动物研究方法和发现的整合。