神经精神药理学解决了三个相互交织的复杂系统研究中的问题:大脑,人类行为和疾病症状。该领域试图理解可以影响这些系统的扰动,要么驱动健康或疾病。为了达到这一目的,研究人员对被扰动系统的性质作出某些假设。这些假设可以被编码在强大的计算模型中,用于弥补描述性分析和系统响应的形式化理论之间的巨大鸿沟。在这里,我们回顾了三组模型:一般线性模型、脉冲响应模型和网络控制模型。对于每个模型,我们描述了模型的基本形式,回顾了其在各领域的使用,并对其优劣势进行了评估。本文发表在NEUROPSYCHOPHARMACOLOGY杂志。
1. 介绍
有一个树和风的思想实验很有意思,在俄罗斯加里宁格勒州库尔尼沙嘴的舞蹈森林里,数十棵松树环绕成圆圈、螺旋、心形和弯曲等不同的形状。风是如何影响树木的?答案取决于“树”的性质。如果一棵树只是一根树干,躺在地上,那么一阵风就可以很容易地把树刮倒。相反,如果一棵树是根抓着泥土的树干,那么一阵风可能需要额外的能量来吹倒树,在这个过程中扰乱了泥土。最后,如果一棵树不是孤零零地站着,而是在一个由其他树木组成的森林中,这些树木的特征是根系相互缠绕,那么一阵风可能需要更多的能量来夷平这棵树,扰乱泥土和周围的树木。
树和风的思想实验最初可能看起来很深奥。但仔细观察,关于森林展示的开放性问题与神经精神药理学的基本问题有相似之处。我们关心的树是人类的大脑,或者是人类的精神病理症状,或者是人类的行为。风可能会扰乱树,要么把它吹倒,要么把它扭曲成美丽的东西,要么变成破碎的东西。一般来说,这种风可能是环境或背景的变化、生活事件、健康或改变的神经发育过程、药物治疗或刺激。我们预测干扰对大脑、症状或行为的有益或有害影响的能力,部分取决于我们对“大脑”、“症状”或“行为”这种形式的本质理解的深度。
“大脑”的本质是什么?“症状”呢?“行为”呢?在一些研究中,我们仍然无法回答。在其他研究中,我们采取实用主义策略,假设一个特定的性质,从而允许我们随后做出特定的推论。大脑区域被假设为一个孤立的体积,与其他大脑区域没有连接;症状被认为是一种自我报告的经验,不依赖于其他经验;一个行为被认为是对一个任务的响应,与其他响应无关。
在这里,我们考虑对大脑、症状和行为领域的经验分析中的三个常见假设:一般线性模型(GLM)的常用形式(树干)、脉冲响应模型(有根的树干)和网络控制模型(森林)。在每个部分中,我们首先简要地描述模型,然后回顾如何在最近的文献中使用模型来理解神经,症状和行为系统,最后讨论每个模型的优缺点。作为一个领域,我们的科学研究经常试图根据扰动理解一个复杂的系统。这种干扰可能由环境造成,由实验室人员设计,或由训练有素的临床医生提供。这些扰动所影响的系统是无数的,但我们的评论将主要围绕大脑、症状和行为系统(图1)。

图1 系统、扰动和模型的概述。
(A)这里我们描绘了大脑、症状和行为的三个系统。包括刺激、药物干预、生活事件和环境变化在内的扰动都会影响每一个。 (B)我们可以尝试使用不同复杂性的计算模型来理解这些系统及其对扰动的响应。
2. 神经系统、症状系统和行为系统
2.1 成分和关系
神经系统:由计算单元和调制单元组成,用于接收、处理、修改和传输信息,这些单元存在于多个空间尺度上。独立于空间尺度,单元之间以物理连接的异构模式相互连接,支持通信、一致性和其他类型的功能交互。物理连接在小尺度上包括突触和间隙连接,在大尺度上包括大的轴突束或白质束。
症状系统:症状集群的形成反映在诊断实践中,根据诊断和统计手册,患者必须表现出九种症状中的五种(或以上),才能被诊断为重度抑郁症。传统上,这种症状并存的解释是假设一种潜在的潜伏疾病引起了一系列症状。
行为系统:人们可以将行为定义为可测量的行为:与环境的相互作用。一个常见的例子是对认知需求的反应时间。人类功能的第二种外在因素是人的情感状态。虽然情绪状态不同于行为,但同样可以通过对任务操作的反应来测量。然而,状态和动作都不是独立的,而是可以相互作用的。人类可能更有可能从轻蔑的状态转变为恐惧的状态,而不是从厌恶的状态转变为喜悦的状态。同样,动作的测量速度通常与动作的测量精度呈负相关。此外,一个给定的动作可能会影响后续的动作,表现为不对称的切换成本。我们在行为和症状之间所做的区分实际上是有用的,事实上,这两者存在于人类经验的一个明显的连续统一体中。
2.2 网络表征
神经系统:早期对猕猴、猫和秀丽隐杆线虫的研究表明,将神经系统表示为图或网络具有潜在的实用性。
精神障碍的网络表征为解释症状共现提供了另一种解释。个别症状本身随着时间的推移相互影响,会形成因果连接网络。根据这一观点,疾病的个体症状在发病时间、严重程度甚至对治疗的反应上都是不同的,同时不同时间的症状相互作用也是存在的。
科学家长期以来一直认为人是一个复杂的系统,人的感觉、思想和行动是相互关联的,并且随着时间的推移而变化。在精神障碍之外的应用中,由情绪、社会行为和其他心理状态组成的网络被创造出来,以实现将人视为复杂系统的概念。在对非人类动物的研究中,最近的工作主要集中在行为上,对大量视频片段进行算法编码,将动作划分为行为单元(网络节点)以及在这些单元之间(边)转换的可能性。总的来说,这样的网络映射强调了一个事实,即功能域不是二元或一元的。相反,它们是由一组单元组成的,这些单元的相互作用产生了的各种模式。
2.3 网络扰动
2.3.1 神经系统
神经系统本质上是网络系统的概念改变了我们对心理健康的临床干预的看法。神经精神疾病的药理学干预最常见的作用机制是对分布式神经递质系统的操纵。神经递质系统分为两大类:快速离子型神经递质和慢代谢性神经递质。后者包括靶向的血清素、多巴胺和去甲肾上腺素系统。代谢性神经递质调节向离子性神经传递,因此,干扰神经传递的影响在多个时间尺度上展开。不同的代谢性神经递质输入,也称为神经调节,可以驱动神经元群表现出不同的协调放电模式,这表明神经递质从根本上影响网络相互作用,而不是引起简单的放电增加或减少。
神经调节药物穿过脑屏障到达每个大脑区域,其效果取决于药物的结合谱以及神经递质受体的区域表达。神经递质作用的机制在整个大脑中也不同,取决于外部需求。这种空间异质性和状态依赖性使我们无法理解药物治疗如何独立地扰动单个区域。在我们的类比中,当有风从几个方向吹来时,同样很难判断哪一阵风对树的影响最大。网络表征解决了这种复杂性,它允许将大脑作为一个整体来研究,而不是作为单个区域或甚至成对的相互作用来研究。事实上,神经递质的操纵改变了区域间的相互作用,可以简单地描述为影响全球网络的灵活性、分离和整合。
2.3.2 症状系统
网络图提供了一个框架,在该框架中可以捕捉单个症状的重要性,并直观地了解症状在不同时间之间相互产生的因果影响。通过关注个体症状及其相互作用,也为理解精神障碍的病因学提供了一个新的视角。一种被称为滞后的现象被赋予了关键作用,即一旦系统转移到另一种状态(例如,一个人变得抑郁),它往往会保持在新的状态,直到导致变化的外部输入被改变到比触发状态变化所需的低得多的水平。精神病理状态的维持,由高水平的症状活动组成,理论上只发生在强连接的网络中,由网络组件之间的许多滞后关联组成。当这种强连接网络中的症状受到干扰时(例如,经历了有压力的生活事件),症状活动就会通过网络中的因果关联传播到其他症状,从而形成一个自我维持的症状网络。
2.3.3 行为系统
人类行为通常会受到环境变化或我们所处的特定社会环境的影响。例如,在一个有压力的环境中,从晚餐过渡到喝酒的可能性可能很高,而在一个没有压力的环境中,从晚餐过渡到跑步(或一本好书)的可能性可能很高。理解对环境或背景的扰动如何在相互作用的行为单元的复杂系统中导致可预测的变化,可能对社会政策、工作场所标准和教育机构的实践产生深远的影响。此外,这样的理解可以为精神疾病患者的环境干预措施的发展提供信息。
在上面描述的三个系统中—大脑、症状和行为—有许多共同的特征可以被模型考虑进去。首先,这三个系统都是由可能受到外部因素干扰的部分组成的。第二,对系统某一部分的扰动会影响到邻近的部分。第三,系统对扰动的响应可能不仅取决于部件及其邻居,还取决于相邻之间的关系和更广泛的网络。在接下来的章节中,我们将描述每种建模方法,回顾它们在研究大脑、症状和行为方面的使用,并评估它们的相对优点和缺点。
3. GLM
我们将从一种最简单但最普遍的方法开始,来建模受外部变量干扰的复杂系统。具体来说,我们将考虑GLM的一种常用形式,它通常用于评估外部变量(例如来自环境的变量)对系统各部分的活动或表达的影响。这种方法的基本假设是,系统是由可以被扰动的部分组成的(图2)。也许我们已经随时间测量了大脑或行为变量(图2a),并希望了解任务结构的扰动驱动如何影响这些变量(图2c)。或者,我们可能测量了人的大脑或行为变量(图2b),并希望了解干预或环境事件的扰动驱动如何影响这些变量(图2d)。

图2 评价扰动对系统影响的单变量或多变量模型。
(A)我们研究的系统通常在多个尺度上是时变的。
(B)我们研究的一些系统是由典型的特征变量组成的,这些变量在不同的人之间是不同的,可能是根据病情的严重程度、年龄甚至是识别号码来排序的。
(C)我们可以使用几种方法来理解任务变量对图A中显示的系统的影响。
(D)我们还可以使用类似的一般线性模型来理解干预或环境变量对图B中显示的系统的影响。
GLM的一个简单的形式允许我们以数学上严格的方式回答这些问题,并使用适当的推理统计。一般来说,这些模型采用Y = Xβ + ε的形式,在这种情况下,Y是测量扰动变量随时间变化的向量,X是测量一个或多个扰动随时间变化幅度的矩阵,β是估计每个扰动的静态效应的系数向量,ε是附加误差向量。为了确定这个方程的唯一解,必须有比X中列数更多的观测值,并且X中没有两列是线性相关的。 为了对整个人类进行有知识的干预,理想情况下,我们应该详细了解这三个系统(大脑、行为和症状)之间的关系。然而,我们的许多实证研究仅限于这个多系统的一部分。因此,我们将考虑每个系统是如何建模的。
GLMs常用于任务功能磁共振成像数据的分析,以识别认知功能的神经相关。这种推断是通过测量特定刺激引起的BOLD信号变化或刺激之间的对比来实现的。经典的假设是,一个神经事件引发了BOLD活动的缓慢增加,由被称为典型血流动力学响应函数的gamma函数定义。GLM被用来独立估计每个体素或大脑区域的这种增加的程度,从而推断出个体区域参与特定认知过程的程度。GLM的使用有助于定位刺激属性的神经表征,并识别涉及一般任务和特定任务认知过程的区域。GLMs为多种认知过程提供了重要的见解,包括但不限于初级刺激处理、内部和外部导向的注意力以及自我参照思维。除了揭示与大脑区域相关的认知过程外,GLM还为后续更复杂的分析技术的发展奠定了基础。例如,GLMs在功能磁共振成像研究中使用非常普遍,以至于公开可用的工具可以对超过14,000项研究中的500,000多个激活图进行元分析,从而促进更多的发现。早期的GLM研究也为大样本量研究的任务fMRI协议奠定了框架,如人类连接组项目。总的来说,GLM技术既揭示了认知和大脑激活之间的重要联系,又进一步激发了关于行为个体差异的神经基质的丰富研究。
GLM也一直用于研究精神疾病和更普遍的行为是如何受到环境变化的影响,或如何帮助干预疾病。与神经精神药理学相关的例子有很多,包括旨在减少重度抑郁症的行为干预效果的测试,戒烟尝试期间药物对尼古丁戒断的影响,以及应激生活事件对认知的影响。GLM方法将其他可能影响最感兴趣的结果变量的症状和行为作为控制变量。采用这种方法尽可能清晰地确定相关干预或事件对相关症状或行为的影响,独立于其他可能的影响来源。
虽然GLM在将区域激活与认知联系起来方面非常有用,但它仍然是应用于fMRI数据的大量单变量检验。因此,该模型不知道大脑区域之间的相互作用在认知中的作用。此外,传统的GLM方法假设所有大脑区域的神经活动和所有被研究个体都表现出相同的血流动力学反应,但事实并非如此,不同个体的血流动力学反应是不同的。自该技术引入以来,该领域一直在争论评估脑激活图统计意义的适当方法。对于临床应用,静息状态连通性测量可能确实比任务功能磁共振成像和常用的GLM形式更可靠。GLM的一个优点是可以灵活地处理单变量和多变量过程,也就是说,它可以超越对系统单个部分的研究。一个弱点是,它没有正式解释复杂整体中各部分的关联性,换句话说,模型是假定扰动会影响系统的各个部分,但不是系统地。
4. 脉冲响应模型
与刚才描述的GLM不同,网络模型显式地对系统各部分之间的关系进行编码。这些模型提供了关于网络节点之间个体关联的信息。然而,在许多应用程序中,研究重点超出了这种边中心表示,而是对系统作为一个整体如何表现的检查。捕捉系统级的功能需要一种能够对高维系统中网络单元之间的相互作用进行建模的工具。
最近的研究转向了脉冲响应模型(图3)。使用变量之间随时间相互作用的网络模型,脉冲响应分析首先涉及模拟网络中某些变量的瞬时外生脉冲(称为冲击)。然后,绘制了这个脉冲如何沿着滞后边缘在网络中传播的图。脉冲响应函数显示了在几个时间点的视界上,一个变量对另一个变量的模拟增加的响应的假设变化。至关重要的是,在对系统中的另一个节点进行冲击后观察到的一个节点的活动包含系统级信息。以这种方式,脉冲响应模型(不同于常用的GLM形式)观察系统的各个部分的相互影响。

图3 脉冲响应模型。
(A)左:编码区域间跨时间或跨人关系的大脑网络。 中:编码症状之间跨时间或跨人关系的症状网络。 右:编码认知、行为或神经心理学变量之间跨时间或跨人关系的行为网络。 (B)网络对脉冲的响应图。网络响应显示在最上面一行,下图显示了受刺激节点的响应(浅绿色)和第二个节点的响应(深绿色)。
尽管脉冲响应模型比简单的模型有明显的优势,但它们还没有被广泛应用于行为和症状系统。值得注意的是对抑郁症、焦虑和烟草依赖的研究。在这里,我们依次回顾每种模型,然后讨论脉冲响应模型在神经系统中的使用。
在临床抑郁症患者的样本中,Bos等人研究了被试日常生活中的动态情感,以及身体活动和压力体验对快乐缺乏症患者与无症状患者的影响程度。通过连续30天每天三次完成情感、行为和认知项目,参与者生成时间序列,然后进行向量自回归(VAR)分析。对于每个参与者,这一过程产生了一个网络,表明了六个变量之间的滞后关联:高唤醒的积极影响、低唤醒的积极影响、高唤醒的消极影响、低唤醒的消极影响、压力和身体活动。然后将脉冲响应分析应用于这些VAR模型,以检查身体活动和压力对十个时间点的影响。当模拟身体活动的增加时,其他变量只有轻微的变化。当模拟压力的增加时,非快感缺乏症个体的情感相对于快感缺乏症个体的情感表现出更强的增长。这些发现与预期相反。
Lydon-Staley等利用经验抽样数据评估日常吸烟者在戒烟两周期间的六种戒烟症状(焦虑、渴望、抑郁情绪、易怒、饥饿和难以集中注意力),研究了戒烟治疗对症状活动随时间变化的影响。在构建了表明症状之间滞后关联的特定网络后,脉冲响应分析被应用于量化一种症状的模拟增加如何影响其他症状。结果显示,在密集联合治疗条件下,症状在扰动后恢复平衡所需的平均时间比在安慰剂条件下的参与者要快。从广义上讲,该研究证明了脉冲相应模型可以就干预措施如何不同地影响症状之间的动态相互作用这一问题提供的独特见解。
Yang等人在一个突出的例子中展示了网络方法和脉冲响应分析的灵活性,他们将两者结合起来捕捉青少年的情绪系统动力学。从130名青少年中收集了逐秒的心理生理时间序列,包括呼吸窦性心律失常和皮肤电导水平,以及通过视频介导的回忆来测量的逐秒的痛苦自我报告。在构建嵌入在这个三节点系统中的时滞关联网络时,情绪协调和情绪调节被捕获。情绪协调是情绪系统的心理生理、认知和行为成分的同步结合。情绪调节是指对环境事件产生灵活、可控的情绪反应的能力。分别给每个节点一个脉冲,对于每个模拟,跟踪所有三个节点的变化,直到活动达到平衡。在这个平衡水平上的节点活动值提供了系统反应性的指标。与之前的研究相反,这里使用的方法强调了情绪状态相互关联的本质。
脉冲响应模型及其相关技术也被应用于神经系统的研究。早期fMRI研究试图描述初级视觉皮层对单一刺激的冲动反应,而没有估计潜在的多成分网络模型。最近的研究使用了活动流(冲动反应模型的一种变体)来估计沿全脑静息状态功能连接组扩散的活动对任务的激活。该小组的工作集中在平均可控性,即量化每个大脑区域脉冲响应曲线下的区域,使用扩散加权成像获得的结构网络的线性动力学。额边缘区的平均可控性随年龄增长而增加。研究非线性系统中局部扰动的影响是很有前途的,因为它们能够再现大脑信号的振荡特征。然而,对于这样的系统,并没有一个经过验证的区域脉冲响应测量工具箱。这些发现表明,神经系统中的脉冲响应指标可以捕获与行为相关的信息,这些信息可能作为有用的生物标志物和未来治疗的理论试验平台。
优点:脉冲响应分析为强调活动通过连接组件的网络传播的理论提供了一个合适的分析匹配。它在计算过程中结合了方向性和边的符号,允许洞察复杂的特征,如正反馈和负反馈。
限制:在使用脉冲响应分析结合VAR(向量自回归)模型时,我们假设系统和系统中各单元之间的相互作用是时不变的。正是这个假设使我们能够预测系统对扰动的反应。时变VAR模型可能适用于系统动态随时间变化的情况,并且将脉冲响应分析用于预测扰动后的系统活动限制在时不变VAR模型能够充分描述系统动态的时间段内。与将注意力限制在可能假定定常过程的时间段相关的一个考虑是,通常需要密集采样的时间序列数据来拟合VAR模型。所需数据量的指导方针仍有待建立。另一个需要考虑的问题是用于建立模型的系统单元。模拟扰动的结果将根据我们假设的与系统相关的单元而有所不同。
对脉冲响应分析更具体的考虑涉及到所选择的时间范围,以检查系统对扰动的响应。上面描述的大脑、行为和症状网络中的脉冲响应分析的例子灵活地使用了几个不同的时间范围。例如,有人使用扰动后10个时间点的时间范围,其中一种方法使用向后搜索来识别系统在扰动后返回接近其起始值所需的时间,另一种方法确定了系统达到平衡点的时间。不同研究之间的差异突出了脉冲响应分析可用于捕获最感兴趣的系统响应的灵活性。
5. 网络控制模型
网络控制模型(图4)规定了系统的状态如何随时间变化作为内在动力学和时变外部输入的函数。请注意,脉冲响应模型是网络控制模型的一种特殊情况,它捕捉了系统在单个初始输入后如何演变。网络控制模型定义了一个由N个相互作用单元组成的系统,每个单元在时间t时都有一些测量性质,表示为向量x(t)。例如,N单位可以表示行为症状、神经元或中尺度大脑结构。因此,x(t)值可能分别包含症状强度、放电速率或BOLD fMRI信号的度量。

(A)网络控制理论要求设计方案,将系统从一个状态(节点上的值)移动到另一个状态(节点上的不同值)。 (B)干预措施可以从单个区域(上)或从多个区域(下)以时间依赖的方式实施。 (C)(左)由网络架构决定的能源景观的插图,反过来编码了这样一个事实,即某些过渡比其他过渡更容易驱动。(右)两个互补的度量,可以量化状态转换的容易程度。
与脉冲响应模型的特殊情况不同,一般的网络控制模型可以包含时变的外部输入到由向量u(t)表示的系统中。这些输入通过一些变换被过滤成x的单位和维度。系统的时间级数可以描述为x(t) = f(x, u, t)。这个函数假定状态变量x(t)的变化由系统当前状态的某个函数、N个单元之间的内在相互作用以及过滤后的外部输入决定。在x(t)表示症状的情况下,u可能表示一个不利的生活事件,经过某些函数过滤后,它对x(t)中的症状具有特征性影响。在x(t)表示神经活动的情况下,u可能表示药物的结合亲和力,当通过受体表达的空间模式过滤时,它对神经活动具有特征性的影响。网络控制模型特别适合于神经、症状和行为系统的研究,因为它们捕捉了内在动态和外部环境之间的持续相互作用。
许多研究已经将网络控制模型应用于中尺度和微尺度神经系统。由于非线性系统研究在分析和计算上的局限性,大多数研究都使用线性时不变网络模型。最常见的形式是x(t) = Ax(t) + Bu(t),其中A包含N个神经单元之间的测量连接集,B是一个线性输入滤波器。网络控制理论的一个子领域,被称为最优控制,允许人们求解驱动线性系统A从指定的初始状态到某些期望的目标状态所需的外部输入u(t)。使用控制框架,还可以获取多个认知任务中驱动大脑活动的潜在输入。数据驱动的网络控制模型已被用于成功解码顽固性癫痫患者植入电极网格的情绪波动和言语背后的运动模式。开环和最优控制技术的结合可以解释外源性电刺激如何使大脑进入有利于情景记忆回忆的活动状态。研究发现,理论上精神分裂症患者需要更强的输入才能达到与工作记忆表现相关的全脑fMRI激活模式,而维持这些状态所需的输入强度因前额叶D1和D2受体表达而异。研究发现,患有染色体22q11.2缺失综合征的患者在fMRI激活模式上花费的时间更多,需要更强的输入来维持。这些初步研究为神经递质药理学和脑刺激方法与神经活动的网络控制模型相结合奠定了框架。
心理健康专业人员对观察个性化行为网络(广泛包括情绪、认知过程、症状和行动)越来越感兴趣。估计网络的一个用途是识别驱动其他节点行为的节点,因此,可以在治疗早期针对这些节点,以达到所需的系统状态。网络控制模型最近已扩展到心理网络,以提供能够指导个性化干预的统计框架。数据驱动的控制模型已应用于神经系统,用于解释外源刺激如何将大脑驱动到所需的活动状态,可以很容易地转化为症状和行为网络,以确定最佳治疗目标,并模拟潜在干预的理论疗效。
相对于神经系统和行为的真正复杂性,网络控制模型简单且有效。但在实践中,有关系统状态和输入的函数通常是未知的。在神经递质系统的情况下,这种无知源于无法将分子和神经元机制与大脑活动的中尺度测量联系起来。在行为症状的情况下,生活事件如何随着时间的推移可靠地影响一系列症状尚不清楚。数据驱动的方法可能被证明对于近似这些链接功能以及底层网络交互是有用的,但在用于临床之前,它们需要对来自单个个体的大量数据进行仔细验证。从复杂的模型中收集可解释和直观的临床决策支持可能需要临床医生具有独立的专业知识,这可能限制了它们在高度专业化的护理环境中的效用。从实际的角度来看,网络控制模型的效用取决于网络本身可以被估计的确定性,以及模型中使用的动态形式的真实性。在使用网络控制模型时,会受到例如数据采集方式、空间分辨率、量化方法等外界因素的影响,因此在方法学方面还需要进一步研究。
6. 未来的发展方向
上述内容提到的三种模型都通过解决前一个模型的局限性来改进该领域的状态。虽然模型开发和选择的过程仍在快速进行,但仍然存在许多充分利用现有方法的机会。
在基础科学领域,存在一个重要的问题,这三个系统是如何相互联系的?更重要的是:这种相互联系如何建模?如何扩展这些方法来处理多个系统的存在,这些系统有自己的组成概念(或网络节点)和关系概念(或网络边缘),我们是否需要一种全新的方法?也许,将典型相关分析作为推导两个系统之间依赖关系的一种方法是有用的。这种依赖关系可以用来建立两个或多个系统的多层网络模型,而这些模型又可以用网络控制原理来研究。这样的可能性是否合理?还是首先需要更多的基础研究?
在考虑临床研究时,我们面临的最关键的挑战可能是理解和解析异质性。理解异质性隐含的是理解参与者特征(大脑、症状和行为)是特征类还是状态类的时间尺度。性状通常被誉为临床医学的金标准,因为它们具有可重复性。然而,复杂系统通常显示丰富的时间动态,其中可再现的特征是一个动态规则,而不是变量值的任何单个情况。通过要求静态测量的可重复性,而不是通过丰富的状态空间寻找可重复性的动态轨迹,我们能否在真正理解精神疾病的复杂性方面得到结果?度量这些系统的适当时间尺度是什么?这些时间尺度与测量扰动影响的适当时间尺度是相同还是不同?这些问题的答案将如何改变我们建模的方式?
在方法学方面,统计模型是否真的是未来的主力。统计模型最终会被机器学习方法更正式地补充吗?如果是的话,如何补充?在确定统计模型和机器学习模型之间的适当平衡时,清楚地陈述研究者希望获得的理解类型是很重要的。计算模型还有一个好处,就是可以用与可推广的形式理论相同的语言来编写,而后者的结构方式是人类可以自然地进行推理和使用的。未来的工作可能会更好地形式化算法和模型之间的交叉类型,这可能会最好地推动科学朝着我们的集体目标发展。
将理论、建模和实验联系起来的一个关键考虑因素是使用适当的框架进行因果推断。我们的讨论集中在研究和发现扰动对复杂系统的影响。这种努力很自然地有助于查明原因和机制。我们所讨论的三种方法对因果关系的明确解释各不相同。未来的工作,在经验科学、理论科学和科学哲学之间的桥梁,可以寻找微扰模型和因果框架之间的交叉点。此外,这些努力可以从数据特别丰富的观察性研究中勾勒出因果推断的最佳实践,而不是从数据较少和精心设计的干预措施的临床研究中。
最后,值得提出的问题是,计算模型是否是最终目标,或者它们是否是通往更大目标的垫脚石。在考虑这一问题时,我们面临着建模与理论之间的根本区别和联系。我们真正寻求的是理解,而计算模型(及其相关的分析方法)是获得理解的有用工具。但是模型并不是理解本身,模型可以实例化理论,当理论被测试,被证明或被推翻时,理解就产生了。因此,一个重要的未来方向是定义模型背后的理论,并以更直接的方式使用模型来证明或推翻特定的理论。