基于EEG的功能性脑连接的图论建模:神经人因工程学背景下的系统综述

图论分析作为一种数学方法,已在脑连接研究中得到应用,用以探索网络模式的组织。图论指标的计算使得能够表征脑电图(EEG)信号的静态行为,这些行为无法通过简单的线性方法解释。本研究的主要目的是系统性地回顾图论在神经人因工程中映射EEG数据功能连接方面的应用。此外,本文提出了一个使用源和传感器方法从EEG数据构建非加权功能性脑网络的流程。从57篇文章中,我们的结果显示,用于表征EEG数据的图论指标自2006年以来受到越来越多的关注,2018年发表频率最高。大多数研究集中在认知任务上,相比之下运动任务较少。基于"相位锁定值"的平均相位相干方法是所回顾研究中最常用的功能估计技术。此外,非加权功能性脑网络在文献中受到的关注远多于加权网络。全局聚类系数和特征路径长度是区分全局整合和局部分离最普遍的指标,而小世界属性则成为表征信息处理的一个引人注目的指标。本文为在神经人因工程研究背景下使用图论指标建模功能性脑连接提供了洞见。本文发表在IEEE Access杂志。

第一节 引言

     人脑是人体最复杂的器官,由1000亿个神经元通过近150万亿个突触相连。在过去几十年中,人脑连接的映射在神经科学和认知神经科学领域引起了相当大的关注。现代网络科学,作为动态系统理论、图论和统计学的结合,已被应用于研究各种状态和条件下的功能性和结构性脑连接网络。研究者们已经努力研究了神经系统疾病网络、脑部疾病和功能障碍网络、老化网络、静息态网络,以及高级脑功能网络,如感知、问题解决、记忆和注意力的拓扑特性。

     图论方法是一种强大的数学工具,它基于现代网络理论图形化地展示了复杂网络架构。1736年,物理学家莱昂纳德·欧拉解决了穿越普雷格尔河的问题,即著名的"柯尼斯堡七桥问题"。目标是只穿越一次连接普雷格尔河中两个小岛与柯尼斯堡市的七座桥,并返回原始位置,使用抽象表示并消除除陆地和连接它们的桥梁以外的所有特征。用现代术语来说,欧拉将每块陆地替换为一个抽象点(即"顶点"或"节点"),将每座桥替换为一个抽象连接("边"或"线"),从而形成了一种称为"图"或"网络"的数学结构。对这个问题的思考奠定了"图论"的基础——网络理论中的第一个真正证明。1741年,欧拉发表了题为《关于位置几何问题的解答》的论文,描述了柯尼斯堡桥问题的一个假设解决方案。

      此后,图论在电路和化学结构领域成为了一种重要方法。图论的现代时代始于20世纪90年代末,小世界性和无标度网络模型的发现使得量化脑连接模式成为可能。图论指标被用来研究脑网络的拓扑组织,并表征人脑有意义的功能分离和整合。

     系统综述的目的是识别、总结和分析所有解决预定研究问题的相关个体研究的发现。系统综述和元分析首选报告项目(PRISMA)是一种结构化指南,用于确保可靠和有意义的综述结果。该协议包含27个检查表项目,帮助研究者准确可靠地准备和报告证据,从而提高研究质量。本研究着重于理解图论分析在神经人因工程背景下应用的当前知识状态。神经人因工程研究大脑和工作中的行为,应用神经科学的方法和工具来阐明人类表现的神经特征。

     大脑具有五种不同类型的波,文献中有各种脑信号分类。最广泛使用的分类法是基于脑波的五种频率,以赫兹(Hz)为单位测量,如:delta (0.5–4 Hz)、theta (4–8 Hz)、alpha (8–13 Hz)、beta (13–30 Hz)和gamma (30–150 Hz) 。表1总结了根据频率范围划分的不同类型脑信号的信息,包括心理和行为条件的描述。

表1 根据频率范围划分的脑信号分类,包括描述、心理和行为条件,以及在大脑中的位置

图片

      人脑由四个主要部分组成:大脑、小脑、脑干和间脑,它们共同控制所有身体功能。大脑拥有最多的神经元,有四个主要叶:额叶、颞叶、顶叶和枕叶,每个叶执行特定功能。额叶与推理、运动、计划、情感和问题解决相关。相比之下,顶叶与运动、识别和刺激感知相关。颞叶与记忆、语言和听觉刺激识别相关,而枕叶则与视觉反应有关[。不同脑区之间的信息传递反映了局部分离和功能整合过程的结合。

     "连接组"指不同脑区之间的连接以及这些区域之间信息传递的方式。三种不同类型的连接性密切相关:结构连接、功能连接和有效连接。结构连接包括神经元之间的物理连接,称为"神经解剖"连接,指大脑中的白质连接。功能连接是"从不同脑区记录的生理时间序列之间的统计相互依赖性"。有效连接指一个神经元素对另一个的因果效应和直接影响。功能和有效连接通过对多个时间点记录的信号进行采样来确定,这提供了对脑功能更好的理解。关于功能和有效连接的综述,我们建议读者参考Friston等人,Friston[,以及Goldenberg和Galván的文章。

       神经人因工程领域一直致力于研究工作和日常环境中的脑信号。神经人因工程研究中使用的有用分析方法数量正在迅速扩大;然而,在神经人因工程背景下的功能性脑连接和网络拓扑结构仍然largely未知。脑网络通常从不同神经成像技术收集的数据中建模。现代脑电图(EEG)系统是非侵入性的、便携的、无线的,且易于使用,使其对神经人因工程研究具有吸引力和适用性。功能连接研究中相当多的工作集中在主要由功能磁共振成像(fMRI)测量的血氧水平上,因为它具有良好的空间分辨率。然而,这种技术的时间分辨率较低,只提供脑活动的间接测量。为了研究动态认知过程和脑活动信息的定向流动,高时间分辨率技术(如EEG)能够在亚秒时间尺度上捕捉脑活动的时间动态,并反映神经元状态的快速变化。此外,EEG能够捕捉丰富的时间信息,有助于识别不同脑区之间信息流动的方向(即因果推断)。

      在过去的二十年里,EEG连接性在临床研究中引起了相当大的兴趣。Stam等人报告了图论应用于EEG数据的第一个案例,他们比较了对照个体和阿尔茨海默病患者的功能性脑网络。然而,关于日常活动中的健康参与者,我们知之甚少。自神经人因工程兴起以来,尝试表征EEG数据的研究仅限于使用单个电极的传统EEG信号分析,而不同EEG电极之间的相互依赖性很少被涉及。

      先前的研究成功地量化了各种认知和体力任务下的人类状态;然而,要理解日常任务中脑区之间的动态时间交互,还需要进一步的工作。因此,本研究旨在回顾使用图论指标计算任务诱发的EEG数据中的脑连接模式。

      与先前的综述不同,我们将本次综述限制在使用健康参与者功能性脑连接数据的EEG研究中,这些研究与神经人因工程领域相关。此外,我们总结了构建EEG数据功能网络的流程。本系统综述的主要焦点是提供一个框架,以促进在不久的将来在神经人因工程领域应用功能性脑网络分析。本文组织如下:第二节,方法,介绍了用于选择本综述评估文章的标准、搜索策略和资格标准,以及数据提取、综合和有效性风险评估;第三节,理论背景,定义了功能连接和图论的基本概念。本节还描述了基于EEG数据构建功能性脑网络的流程,并讨论了使用网络测量的数学描述来表征全局和节点脑连接的不同类型网络;第四节,结果,提供了系统文献搜索的结果、研究特征和所考虑研究的有效性评估;第五节,讨论,讨论了图论在认知功能和运动处理中的应用;最后,第六节,局限性和未来方向,概述了当前的局限性并为未来研究提供建议。

第二节 方法

A. 综述标准

     本系统综述基于系统综述和元分析首选报告项目(PRISMA)指南进行。文章的选择基于几个研究问题,搜索策略的设计旨在减少研究预期对当前综述的影响。根据Higgins等人的建议,使用Cochrane协作方法来最小化偏倚风险。

B. 研究问题(RQs)

RQ1:随着图论的出现,哪些应用被用来模拟人类认知和运动处理?

RQ2:如何使用计算方法来表征认知功能和运动处理的潜在神经机制?

RQ3:EEG对连接组有什么贡献?

RQ4:如何使用EEG数据建模无向、无权重的功能性脑网络?

RQ5:与传统方法相比,图论方法是否有助于表征EEG测量的人类认知和运动的潜在神经机制?

RQ6:如何在神经人因工程中实施建模脑连接模式的计算方法?

C. 搜索策略

      使用以下数据库和搜索引擎独立进行了全面的文献搜索:Google Scholar、Science Direct、IEEE Xplore、SpringerLink、Ergonomics Abstracts和ProQuest,不限制出版年份。首先,我们应用了以下布尔运算符:"electroencephalography"或"EEG"和"graph theory"或"functional connectivity"或"brain network"。这次搜索共得到5,429篇文章,来自Science Direct(n = 2,159)、Google Scholar(n = 2149)、SpringerLink(n = 544)、IEEE(n = 489)、ProQuest(n = 50)和Ergonomics Abstracts(n = 38)。随后,删除重复文章,剩余4,929条记录。

D. 研究选择

      由于先前搜索词获得的结果数量巨大,我们应用了更多带布尔运算符的关键词,不限制出版日期,如下:

"electroencephalography"或"EEG"和"graph theory"或"functional connectivity"或"brain network"和"cognitive function"或"cognitive work"或"cognitive task"或"cognitive performance"。

"electroencephalography"或"EEG"和"graph theory"或"functional connectivity"或"brain network"和"physical work"或"physical task"或"physical performance"或"physical activity"或"motion"或"motor"或"exercise"。

"electroencephalography"或"EEG"和"graph theory"或"functional connectivity"或"brain network"和"fatigue"。

"electroencephalography"或"EEG"和"graph theory"或"functional connectivity"或"brain network"和"workload"。

"electroencephalography"或"EEG"和"graph theory"或"functional connectivity"或"brain network"和"working memory"。

"electroencephalography"或"EEG"和"graph theory"或"functional connectivity"或"brain network"和"perception"。

"electroencephalography"或"EEG"和"graph theory"或"functional connectivity"或"brain network"和"exertion"。

      这些关键词帮助我们保持焦点,并通过排除额外的3,784篇文章缩小了最终研究选择范围。在独立审阅所有剩余文章的标题和摘要后,两名研究人员(LI和WK)独立审阅了325篇文章的全文,以确定纳入和排除标准。任何分歧都通过共识解决。

E. 纳入和排除标准
      应用排除标准来限制最终研究选择。为满足资格要求,我们仅纳入符合以下标准的已发表文章:(a) 仅英语出版物;(b) 人体实验;(c) 仅使用EEG技术的研究;(d) 健康参与者的实验研究;(e) 同行评审期刊、会议出版物、教科书和参考书中的内容。

      具有以下特征的文章被排除:(a) 脑疾病或神经障碍研究;(b) 使用EEG以外的神经成像技术的研究;(c) 婴儿实验研究;(d) 病理状态研究;(e) 仅研究静息状态任务而不考虑任务诱发活动的研究。应用这些排除标准是因为这些关键因素会得到完全不同的全局拓扑属性和脑结构特征。因此,本综述额外排除了273项研究。在筛选阶段,我们发现大量研究集中在静息状态任务期间的人脑网络上。

      为收集所有相关文章,我们审查了候选文章(n = 325)的参考文献列表,得到5篇额外符合纳入标准的文章。文献搜索和选择过程的结果总结在PRISMA图表中(图1)。这部分研究从2019年10月进行到2020年2月。

图片

图1. 本综述中使用的方法和选择过程的流程图,遵循PRISMA指南。

F. 数据收集和汇总措施

     从纳入的文章中提取了相关信息;这些信息总结在补充材料A中,显示了节点定义、边定义、图论指标、参与者数量、领域、实验和主要发现,提供了对RQ1和RQ2的回答。

G. 数据提取和综合

      选定的文章根据以下六个领域进行分类(1) 疲劳;(2) 工作负荷;(3) 工作记忆负荷;(4) 努力;(5) 感知;(6) 运动。

H. 质量评估

     研究质量由两名研究人员(LI和WK)独立评估。作者之间的任何分歧都通过共识解决。使用Cochrane协作方法评估所选研究中每个实验的偏倚风险。Cochrane协作方法有六个主要领域:(1) 随机序列生成;(2) 分配隐藏;(3) 参与者和人员的盲法;(4) 结果评估的盲法;(5) 不完整的结果数据;(6) 选择性报告。为评估文章质量,使用了以下判断:低偏倚风险、不明确偏倚风险或高偏倚风险。

第三节 理论背景

A. 功能连接

      功能连接测量在不同脑区记录的生理时间序列之间的统计相互依赖性。由于功能连接是分析功能性神经成像数据和开发计算机模拟模型的最佳选择,因此被多项研究采用。由于功能连接的计算高度依赖于时间序列上的脑活动,高时间分辨率技术如EEG(<1毫秒)是反映动态和快速神经反应的最佳选择。此外,EEG是连接性分析和因果推断的非常有前景的方法,解答了RQ3。成对区域之间的统计依赖性使用不同的方法测量,这些方法分为线性、非线性和基于信息的技术。这些方法对两个时间序列之间的线性和非线性统计依赖性都敏感,可用于评估因果关系。表2概述了功能连接最常用的估计方法。但应注意,选择最佳估计方法是一个具有挑战性的问题,超出了本综述文章的范围。

表2 功能连接测量列表,指示:(1) 是单变量还是多变量连接测量;(2) 是定向还是无向连接方法;(3) 是时域分析、频域分析还是跨频相位耦合;(4) 是线性、非线性还是基于信息的技术;(5) 对体积传导的敏感性。

图片

      单变量分析应用于分析特定神经生理技术的单个信号特征,而多变量分析通常用于结合不同的神经生理技术。相当多的证据依赖于线性方法;然而,一些研究者使用非线性分析方法来检测大脑的非线性现象其他作者反对使用非线性方法,因为它们对噪音高度敏感。

B. 图论分析的理论方面
     在过去二十年中,图论在神经生理数据量化中的应用在生物学和神经科学领域引起了广泛关注,用于诊断脑部疾病,如癫痫、精神分裂症、阿尔茨海默病、中风后康复和其他脑部疾病(综述见Vecchio等人和Farahani等人)。随后的几项工作旨在研究大脑对任务调节的响应中的拓扑结构。本文介绍的大多数研究主要集中在认知神经科学上;因此,本综述的目标之一是阐明大脑在工作和日常任务中的功能连接。

C. 图论方法
      为了更好地理解网络特性,数据以图(G)的形式呈现,这是一种基本的拓扑表示,由一组V个顶点(节点)通过边(E)(链接或连接器)连接组成(图2),其中G = (V, E)。为了在宏观尺度上研究人脑网络,节点代表脑区(即EEG电极/传感器),而边代表统计关联度量,包括解剖、功能或有效连接。图边包括加权直接、无权直接、加权间接和无权间接。直接边表示信息仅在一个方向流动,一个节点的活动依赖于另一个节点(即因果影响);然而,间接图显示信息在连接的边上双向流动。两个节点之间线的权重反映了边的连接强度,允许区分强连接和弱连接。弱连接可以通过阈值处理去除。

图片

图2. 包含八个节点和十条边的小型网络表示。

1.基于EEG数据构建功能性脑网络的流程步骤
       以下十一个步骤展示了使用EEG传感器源方法或空间源方法构建功能性脑网络的完整流程,这解答了RQ4。先前的研究提供了传感器空间方法或源空间方法的步骤。在本研究中,我们简要描述了两种方法所需的步骤,重点关注无权网络。我们总结了流程的所有步骤,从获取EEG脑信号开始,到脑网络的统计描述结束(图3)。我们的目标是提供一种简单的逐步方法,可供该领域的非专家研究人员使用。

图片

图3.基于EEG数据使用图论构建功能性脑网络的流程示意图。绿线定义了第一种方法,称为"传感器信号"或"单个通道"方法,而红线定义了第二种方法,称为"EEG源连接"。

(a) 将含有电极的帽子放置在头皮上。

(b) 记录EEG时间序列。

(c) 通过清洗、过滤、去除伪迹和分段来预处理数据。

(d) 通过首先估计或成像头部模型来解决反问题(方法2)。

(e) 重建电位时间源(方法2)。

(f) 将源重建的时间段划分为感兴趣区域(ROI)(方法2)。

(g) 为时间段定义ROI。

(h) 为选定的ROI开发连接矩阵。

(i) 为选定的EEG通道开发连接矩阵(方法1)。

(j) 应用阈值来二值化连接矩阵(方法1和2)。

(k) 构建EEG电极之间的头皮功能性脑网络。

(l) 在ROI内构建皮质功能性脑网络。

(m) 应用网络拓扑属性来计算图论测量。

(n) 应用统计分析方法。

(o) 如果需要,对不同状态进行分类。

a: 定义脑网络的节点
      脑网络的节点代表脑区。定义网络节点是一个具有挑战性的步骤,显著影响脑网络分析的结果。在EEG研究中,节点的定义使用两种方法之一。第一种方法称为"传感器信号"或"单个通道",依赖于EEG电极的预定标准放置(图3a)。

      虽然这种方法简单,但体积传导(空间分辨率降低的主要原因)可能影响功能连接估计的准确性。因此,提出了基于EEG源空间连接的第二种方法,可以通过将大脑划分为不同区域并基于分区方案和从脑图谱中单独分离的解剖感兴趣区域(ROIs)来选择感兴趣区域来实现。在记录EEG信号(图3b)、预处理和分段(图3c)之后计算源空间。然后通过软件采集系统确定3D电极位置。为了定位脑源并重建时间序列,必须通过应用以下步骤来解决依赖于偶极子理论的反问题:(a) 通过使用简单的球形头部模型或通过MRI成像真实的头部模型来获得头部模型(图3d)。真实头部模型通常更适合于准确计算大脑的电位和几何特征;(b) 在头部模型中估计源定位,以确定偶极子源的位置并重建时间序列(图3e)。为此目的使用了几种算法,包括波束成形、低分辨率脑电磁断层扫描(LORETA)[92]、标准化LORETA(sLORETA)[93]、精确LORETA(eLORETA)、最小范数估计(MNE)[94]和加权MNE(wMNE)算法。随后,源重建的时间序列被划分为来自大脑的个别ROI(图3f),这些ROI由功能图谱确定,以获得区域时间序列(图3g)。

b: 预处理EEG数据
     从头皮表面记录高质量EEG信号后,必须对连续EEG时间序列数据(图3b)进行预处理,包括分段、过滤、降噪和伪迹去除(图3c)。EEG数据受到不同类型伪迹的污染,这些伪迹分为生理性或非生理性中讨论了各种数据清洗方法。然后,从清洗后的连续EEG数据中提取特定时间窗口"时间段"。

c: 定义边
      边表示不同神经元或脑区之间的连接,并表现出各种连接模式,包括结构连接、功能连接和有效连接。在功能连接中,边表示两个不同节点(图3c)或区域(图3g)之间的时间序列相关性。边被分类为直接或间接,有或无权重。权重提供了关于节点对之间关系的更多信息。

d: 计算连接矩阵(A)
      连接矩阵被称为邻接矩阵,包含关于连接模式之间关联的信息。连接由N × N对称矩阵描述,其中行(i)和列(j)表示节点,矩阵元素(aij)表示边。有两种类型的指标:一种基于通道(图3i),另一种基于脑区(每对脑区的电流密度)(图3h)。

e: 将连接矩阵转换为二值化矩阵
      矩阵二值化是将邻接矩阵转换为无权重矩阵(图3j)。对于矩阵二值化,为每个元素计算阈值。如果每对的相关性测量超过阈值,则在节点对之间添加边(否则不存在边)。

f: 选择阈值
      文献中最佳阈值的选择仍是一个开放问题。阈值化有助于通过消除网络中弱、噪声和不重要的边来简化脑网络计算的复杂性。此外,阈值化便于为统计比较定义零模型。阈值选择显著影响网络拓扑属性和检测组间、年龄和性别差异的能力。选择不适当的阈值方法会造成不稳定性并增加偏差;因此,谨慎选择至关重要。一个关键因素是选择能够控制和最小化I型错误(即假阳性)发生的方法。

      文献[103]-[105]报告了一些适当阈值选择的标准。有各种阈值方法可用,包括固定阈值、固定平均度和固定边密度(详细综述见[104],[106])。然而,这些方法都不能免于偏差。为了对连接组数据进行统计推断,一些研究者建议"在曲线上的每个离散密度独立测试感兴趣的假设"。相反,其他人推荐更复杂的方法,如错误发现率(FDR)错误度量、基于网络的统计(NBS)和基于子网络的分析。无阈值网络基础方法提供了统计显著的阈值。Drakesmith提出了一种多阈值排列校正方法,以提高对实质性群体效应的敏感性,并最小化先验假设。最小生成树避免了比较网络时的方法学偏差,并有助于纠正阈值问题Vijayalakshmi等人提出了一种新的方法,即最小连通分量(MCC),克服了阈值问题。

g: 估计功能连接测量
      表2总结了功能连接估计方法的比较。提供了这些文章的综合回顾。然而,没有一种通用的最佳方法来评估功能连接。

     选择功能连接估计器时应考虑以下因素:(1)将要研究的基本假设的定义;(2)耦合的性质:线性相互依赖、非线性相互依赖或基于信息的技术;(3)估计器的时域或频域依赖性,这最初基于研究中选择的神经成像技术;(4)交互的频率特异性(宽带vs.窄带);(5)直接(即因果交互)或间接类型的测量[65];(6)基于模型或数据驱动的技术;(7)静态或准静态脑信号;(8)双变量或多变量建模考虑;(9)源或传感器电极连接性;(10)对体积传导现象的敏感性

      通常,EEG信号最好基于频域特征表示,以区分神经信号和伪迹信号;因此,基于频率的功能估计器方法特别有吸引力。此外,使用频域方法可以提取脑信号的多个不同频率。Pereda等人支持使用多变量分析方法,但非线性方法也被使用,因为它们对检测EEG信号中的非线性耦合更敏感。有几个基于MATLAB的工具箱可用于估计源或功能连接和分析网络测量,如引文[53]中总结的那样。

h: 构建网络
     在数学上,网络是一个矩阵,二值化矩阵被转换为稀疏连接的图,表示为头皮图(图3k)或皮质网络(图3l)。

i: 使用图论分析数据
      不同的图论指标通过分析网络的拓扑属性来量化网络结构(图3m)。图论用于从功能连接网络中提取特征。Xia等人和Hassan和Wendling总结了已开发的用于可视化和分析拓扑属性的不同工具包。在下一节中,我们将详细描述用于检测无权网络功能整合和分离方面的措施。

j: 应用统计
       应用统计方法来比较图论指标和拓扑网络属性,并评估其统计显著性(图3n)。这一步通常通过比较两种不同状态(警觉vs.困倦)、条件(运动vs.休息)、人群(健康vs.疾病)或性别(男性vs.女性),或通过将结果与理论参考网络进行比较来完成。同时,没有预定义的方法来评估统计变异性。应用置信区间对于测量所得结果的显著性和证明功能性脑网络图分析的可靠性至关重要。其他统计推断方法包括非参数统计、置换统计和自举法,这些方法最适合EEG数据的性质。上述统计方法未能解决大量边特征之间的图拓扑问题,导致研究者开发了一种新的途径来研究连接组特征的表型。自动k-部图检测(KPGD)算法成功识别了复杂网络中的k-部子图。最近提出的层次贝叶斯高斯图形模型为提供稳健的脑网络估计。

k) 分类条件
      已经采用了几种方法来分类不同的脑状态(图3O)。功能连接估计被用于分类疲劳和非疲劳条件,而手部运动则基于网络节点强度进行分类。其他分类算法,如人工神经网络和支持向量机,已被用于利用连接特征分类心理工作负荷和心理疲劳。

D. 图论测量和网络拓扑属性
      网络测量用于对网络属性进行定量研究。表3简要介绍了常用网络测量的非数学描述,这些测量分为全局(图)和局部(节点)测量。全局测量包括特征路径长度(PL)、聚类系数(CC)、小世界性(σ)、全局效率(Eglobal)、局部效率(Elocal)、传递性(T)、网络密度、同配性(r)和模块性(Q);而节点测量包括节点中心性、节点度、枢纽、度分布、度相关、介数中心性、特征值中心性、偏心中心性、接近中心性、节点效率和模体。所提供的定义仅限于无权图。这些网络测量及其解释的详细描述在几项研究中提供。此外,在许多先前的工作中可以找到关于图论在神经科学中应用的综述。有几个软件包可用于识别和表征网络测量,包括BCT 、EEGNet和BrainNet Viewer。

表3 典型网络测量

全局测量
特征路径长度(PL)是网络中所有可能节点之间最短路径长度的平均值[141], [142]。用于测量脑区功能整合,提供全局通信信息。较低的PL表示脑区间功能整合更强,信息流动更容易。
全局效率(Eglobal)是平均最短路径长度的倒数,用于量化整个网络(即全局信息处理)的信息传输总体效率[132]。较高的Eglobal值表示网络中信息并行传输更快[133],信息整合更优[143]。
聚类系数(CC)是相邻节点之间存在的边数与所有可能连接边数的比率[83], [102]。用于测量脑区功能分离,提供局部效率信息。较高的聚类系数对应于更强健和高效的局部交互(即更分离的网络)。
小世界性(σ)是归一化CC(表示为γ)与归一化PL [144], [145]的比率,量化网络与小世界[146]的接近程度,表示大多数节点可以通过少量步骤从任何其他节点到达[46]。
传递性(T)是矩阵中三角形的数量[5]。
网络密度(D)是模型中实际连接数除以其最大容量。密度范围从0到1;图越稀疏,其值越低[147]。
同配性是节点倾向于连接到具有相似边数的其他节点的趋势[148]。
模块性(Q)模块是大型子图,其节点相互之间的连接比与网络其余部分的连接更多,由Stam [149]定义。模块性是根据边的统计排列衡量网络结构的指标[150]。
节点(局部)测量
局部效率(Elocal)是所有节点对的平均效率,表示给定节点的第一邻居之间信息传输的效率[136]。
节点中心性反映节点对网络的相对重要性。有几种衡量节点中心性的指标,包括度中心性、介数中心性、特征值中心性、紧密中心性和节点效率。
度中心性(K)是连接一个节点与所有其他节点的边数,量化该节点在脑功能网络中的重要性。较高的度中心性表示节点更中心。传入节点连接称为"传入",传出连接称为"传出"[102]。高度中心性的节点被称为"枢纽"[40], [151]。
枢纽是边数多于任何其他节点的节点[102],表示与其他区域交互的重要脑区[40]。省级枢纽是连接到同一模块中其他节点的枢纽,而连接器枢纽连接到其他模块中的节点[152]。
度分布P(k)是所有网络节点度数的概率分布,提供有关网络结构的信息。
度相关显示一个节点的度是否受到与之相连的另一个节点的影响[136]。
介数是单个节点比图中所有其他节点更中心的趋势,由Unnithan等人定义[153]。它衡量一个节点位于其他节点之间路径上的程度。
特征值中心性衡量一个节点(i)对其他节点的可达性容易程度[154]。
紧密中心性显示网络中一个节点与所有其他节点的紧密程度[154]。节点越中心,它与所有其他节点越接近[155]。
节点效率(Enodal)衡量一个节点向网络中其他节点传播信息的能力,由Wang等人定义[137]。
模体(M)是由少量节点以特定方式连接组成的简单子图,由Stam和Reijneveld定义[136]。
网络成本是网络中现有边数与所有可能边数的比率,由Wang等人定义[137]。网络成本也称为网络密度。成本高的网络有许多高权重的边[156]。具有高Eglobal和Elocal值的网络被认为是经济型小世界网络[134], [141]。

1.网络类型
       有四种类型的网络:规则、有序或格子状网络;随机网络;小世界网络;和无标度网络(图4)。这些不同的网络根据局部分离事件的数量(通过CC(聚类系数)表示)和节点之间的全局整合(通过PL(特征路径长度)表示)来区分。规则网络具有高CC和长PL,表明网络是稳健的,但在传输信息方面效率低下。相比之下,随机网络具有小CC和短PL,表明网络在传输信息方面效率高,但不稳健。

图片

图4.四种类型的网络(在无标度网络中,白色和条纹节点代表网络枢纽)。

      小世界网络是规则网络和随机网络之间的中间状态,具有类似于随机网络的短PL(特征路径长度),以及高于规则网络的CC(聚类系数)。小世界网络在分离、整合、成本和性能方面被认为是接近最优的网络。无标度网络因其极短的路径长度而独特,并在全局和局部通信之间达到平衡,具有幂律度分布。Kaiser提出了其他基于拓扑和空间组织的网络分类。

第四节 结果

A. 研究特征
     共有57篇文章符合选择标准。不到一半的选定文章(44%;n = 25)发表于2006年至2016年,而超过一半发表于最近三年(56%;n = 32)。因此,本综述显示使用脑连接技术和图论指标的脑功能研究呈增长趋势(图5)。我们预计未来几年内的研究数量将大幅增加。

图片

图5. 基于EEG数据的与神经人因工程相关的图论研究每年发表数量的散点图。

B. 质量评估
     为评估这些研究的证据强度,我们应用了医疗保健研究与质量机构的标准。质量良好的研究被判断为具有低偏倚风险;质量一般的研究被判断有两个不明确的标准;质量低的研究被判断为具有高偏倚风险。研究的整体质量被分类为良好、一般或低,如果低风险领域的数量分别为≥4、=3或≤2。

      在本系统综述中包含的57项研究中,n = 18被分类为质量良好,n = 7被分类为质量一般,n = 32被分类为质量低(图6)。

图片

图6.使用Cochrane协作工具评估偏倚风险。

     这一发现可以归因于大多数研究忽视描述随机序列生成和分配隐藏。此外,不明确的偏倚来自对数据和流失的不明确选择性报告;因此,所包含研究的证据水平较低。

     本综述分析了不同领域的表现,发现大多数回顾的文章集中在疲劳,其次是工作负荷评估。

     总的来说,证据表明认知功能(80%)比运动处理(20%)更频繁地被研究。用于估计功能连接的技术,包括PLV、PDC和PLI,表现出最大的潜在影响(40%)(图7)。许多研究(n = 9)采用PLV技术,因为它克服了使用传统相干方法的限制,并计算EEG信号之间的线性相关性。PDC在使用频率上紧随其后,因为这种技术允许在频域中评估EEG信号的统计相互依赖性。此外,Stam等人建议对非静态EEG数据使用PLI。PLI对体积传导的敏感性低于其他连接测量,对相位锁定伪迹的影响也较小[164]。使用加权网络会导致丰富的拓扑脑组织;然而,许多选定的研究(n = 48)使用了无权网络,即"二值化网络",而只有少数(n = 9)应用了加权网络。CC(聚类系数)和PL(特征路径长度)是最常用的图论指标(平均、标准化或加权)(分别为n = 33和26)(图8)。我们进一步发现,约79%的研究分析了间接网络,而21%评估了直接网络。我们的发现与Bullmore和Sporns [4]报告的FMRI研究一致。CC和PL都有助于评估小世界组织[156]。CC对于量化大脑的功能分离很有用,而PL对于量化网络整合很有用。此外,Eglobal(全局效率)和Elocal(局部效率)的计算都依赖于这两个指标。连接矩阵的构建和矩阵的计算可以借助不同的软件程序完成。选定文章中常用的工具箱(n = 22)是BCT,它拥有大量的拓扑指标,是一个开源MATLAB工具箱。

图片

图7. 估计功能连接方法的帕累托图(相位锁定值[PLV]、部分定向相干[PDC]、相位滞后指数[PLI]、定向转移函数(DTF)、互信息[MI]、最小连通分量[MCC]和幅度平方相干[MSC])。

图片

图8. 图论指标的频率

      任何EEG功能连接网络的一个关键方面是节点数量的选择,这些节点由记录电极通道数量表示。在文献中找到了两个关于这种选择的建议。更密集的电极分布会导致较高的聚类系数,并可能覆盖更多区域以供未来发现。对于EEG源连接方法,建议使用大量电极(即≥64个通道)

     此外,大量电极增加了电源估计的准确性[167]和信号预处理。相反,García-Prieto等人、Li等人和Wang等人建议使用少于32个电极,表明少量电极足以覆盖感兴趣区域并获得可靠信息。Luck也建议使用少量电极,指出使用16-32个活动电极更适合监测脑活动。表4总结了先前出版物中使用的电极数量。根据我们的分析,20项研究遵循第一个建议条件,使用≥64个电极,31项研究遵循第二种策略(≤32个电极),其余研究(n = 6)使用32到64个通道之间。

表4 每个记录电极数量范围的研究数量

图片

      所包含研究的人口统计分布包括健康的男性和女性参与者(图9)。其中,21项研究仅使用男性,而没有研究仅使用女性。大多数研究的男性数量多于女性(n = 16)。剩余的研究(n = 9)没有精确描述按性别划分的参与者数量,如绿色条形图所示(图9)。

图片

图9. 包括健康男性和女性参与者的研究人口统计分布。

第五节 讨论

     本节描述了所回顾研究的主要发现。在不同的认知和身体状态下,功能性脑网络配置表现出显著变化。本节还提供了图论在研究认知和运动处理中应用的见解,符合RQ1、RQ2和RQ5。

     图论在功能性脑网络分析中的应用:本小节分为六个主要领域:疲劳、工作负荷、工作记忆、努力、感知和运动处理。认知过程之间存在一定程度的重叠。例如,认知工作负荷与分配给工作记忆的资源以及与注意力过程的关联直接相关,这可能受到心理疲劳的实质性影响。

A. 关于疲劳的连接性研究

      心理疲劳是一种复杂的心理生物状态,在长时间任务中需要高水平的认知和运动活动。一般来说,疲劳通过减慢反应时间、增加错误率、增加嗜睡和引起肌肉骨骼疾病来降低人类表现。先前的研究已经解决了现实应用中心理疲劳的潜在神经机制。特别是,心理疲劳对车辆驾驶和飞行表现的影响在神经人因工程文献中受到了很多关注。alpha和theta频带的PSD已被证明是与疲劳相关的神经变化的稳健指标。这两个频带的PSD显著增加主要与额叶皮质、内侧前额叶皮质、额中央、枕叶和顶叶脑区的心理疲劳相关。认知神经科学的最近研究探索了疲劳任务表现后脑区之间的交互作用。额叶、中央和顶叶脑的功能连接与心理疲劳强烈相关。在需要持续注意力的任务中,中额回和几个运动区域是连接的。在疲劳状态下,感觉运动区域的右半球和左半球之间也表现出不同的连接模式,这与Liu等人在不同脑区的发现类似。

      此外,一些研究观察到在疲劳后任务中功能连接比疲劳前任务更密集,表明人脑在疲劳时表现出更强的耦合,以维持信息传输直到完成所需任务。与警觉状态相比,在嗜睡状态下alpha和theta频带的相位相干性更高,delta频带的PLI更高,表明相位差的不对称程度较低。

     然而,文献中也存在矛盾;例如,有报道称随着心理疲劳的增加,顶叶到额叶区域的alpha频带和额叶到顶叶区域的alpha和beta频带的功能连接变弱。此外,有研究表明,从警觉到嗜睡的转变过程中,alpha范围内的额叶-枕叶相干值降低。上述研究的结果支持这样一种观点:皮质到皮质的功能耦合(主要在大脑皮质的额叶、中央和顶叶)可以在短时间尺度上表征心理疲劳期间的大脑。

      脑网络拓扑属性的变化反映了人类的心理状态。例如,alpha频带最大特征值的增加反映了人类表现的恶化心理任务中注意力不集中的特征是delta和theta频带的PL(特征路径长度)降低和CC(聚类系数)增加。结果显示疲劳增加了Elocal但降低了Eglobal,表明大脑的资源可能被重组,区域之间的交互可能被抑制。这种趋势反映了人脑在疲劳期间整合信息能力的下降,并导致小世界配置。由于心理疲劳导致的缺乏意识已通过CC的增加和子频带(36-44 Hz)Eglobal值的增加得到证明。

     在delta节律中右顶叶脑区的中心性程度增加,以及在所有频带中的增加表明随着警觉性降低,节点之间的连接性良好。然而,也有相反的结果,如未连接节点百分比的增加,表明从警觉到嗜睡的转变过程中连接出现断裂。此外,一些研究报告了在疲劳任务后CC(聚类系数)、平均度和网络密度的减少,以及PL(特征路径长度)的增加。

     在疲劳期间,额叶皮质的介数中心性也有所增加。任务中期休息(休息)是提高脑网络效率的有效方法,从而缓解疲劳的发生,这体现在会话之间休息后CC和PL都略有增加。

     由于人类表现随时间下降,观察到任务时间与网络指标(主要是节点度、CC和PL)之间存在正相关。然而,一些研究的结果与这些发现相矛盾,其中增加的任务时间导致网络拓扑的线性减少。随着任务时间的增加,PL的增加和小世界性的减少导致大脑网络不那么理想。此外,长时间的任务减少了中央和左额叶区域的网络介数,但增加了右顶叶区域的网络介数。

B. 心理工作负荷的连接性研究
      正如Young等人所讨论的,心理工作负荷是人因工程学领域中最广泛引用的概念之一,作为一个多维构造,可以根据可用于满足任务需求的资源来定义。基于神经元数据的心理工作负荷评估在神经人因工程研究中引起了极大的兴趣(综述见Borghini等人)。认知工作负荷的神经指标,包括基于EEG的工作负荷,已在人机交互和虚拟驾驶环境的背景下进行了讨论。

      额叶theta、枕叶theta和顶叶alpha的PSD已被证明是区分心理工作负荷状态的强大评估工具。随着任务难度的增加,观察到顶叶alpha PSD降低和额叶theta PSD增加;然而,其他研究显示了不一致的结果。

    不同难度水平之间的区分反映在脑网络的功能连接中,主要在前额叶和顶枕叶区域。此外,功能连接的减少已被证明表明在困难任务中人类准确性的降低。与较低难度水平的任务相比,在高难度任务中顶枕叶区域的PLV较低。所有脑区alpha频带的加权PLI值在高认知工作负荷下降低,而在身体任务中theta频带的耦合增加。Dimitrakopoulos等人基于功能连接分析获得的特征,发现与认知任务难度相关的大多数变化发生在额叶theta和beta活动中。

     通过分析图测量可以区分认知难度水平和检测认知障碍。高低认知或身体工作负荷之间的模式各不相同。此外,结果可能从左半球到右半球有所不同。这些分类的意义可以帮助表征工作场所中的危险情况。

     Eglobal(全局效率)和Elocal(局部效率)值对工作负荷水平有显著影响,其中alpha和beta频带Elocal活动的增加与较高的工作负荷水平相关。Eglobal beta模式显示出独特的趋势。Huang等人观察到在游戏过程中theta频带的Elocal降低,而beta频带的Elocal增加。此外,与静息状态相比,beta频带的Eglobal较低,而theta频带的Eglobal较高。在数学处理任务中从子数到检索的转换过程中,观察到delta、theta和alpha频带的Elocal和Eglobal值增加,主要在额顶区域。特别是,增加的努力导致Eglobal增加,产生更加集成的网络和更高的并行信息传输率。分离过程的减少反映在CC和模块性的降低上。Zhang等人报告在困难的心理任务中,beta和低gamma频带的模块性降低、聚集性降低、Eglobal高、Elocal低,以及更大的物理同步距离。此外,在高工作负荷水平下,alpha和beta CC降低,同时中央和顶叶脑区的alpha强度显著增加。这些结果表明,在高工作负荷下,人脑网络具有小世界网络拓扑结构(聚集性较低但全局效率更高)。有趣的是,Klados等人观察到在数学任务和休息期间都存在最优的小世界组织。Vijayalakshmi等人证明了不同电极之间的高度交互作用和beta频带功能性脑分离的增加。

     在认知处理过程中,局部属性似乎比全局属性更为关键。例如,在目标识别任务中,局部CC远大于全局CC 。此外,节点强度在额叶和左半球表现出比全局活动更高的值。此外,在手指敲击任务中,运动执行区域的Enodal增加。

C. 工作记忆的连接性研究
      工作记忆与信息存储和处理过程有关。工作场所中的许多情况需要操纵和回忆信息以进行决策和解决问题。疲劳、压力和工作负荷会对回忆和存储信息的能力产生负面影响,进而影响注意力水平、情境意识和学习表现。训练、练习和学习通过将必要信息存储在长期记忆中来减轻短期记忆的工作负荷。因此,通过工作记忆训练可以改善认知脑功能,这在拓扑网络变化中得到证实,主要在beta频带。CC和小世界性呈现倒U形曲线,而PL则表现出相反的模式。Taya等人证明,在训练期间高频带的全局网络属性增加,而局部属性和小世界性减少。有趣的是,节点介数在训练期间在额叶和颞叶区域表现出变化。然而,Langer等人发现在训练诱导的工作记忆中,theta CC增加而theta PL(特征路径长度)长度减少。因此,训练改善了局部网络连接性和传输信息的全局效率。

     与新任务相比,在经过充分训练的记忆序列实验中,额叶和后顶叶区域的theta频带相位相干性更高。在工作记忆任务中,受教育程度高的参与者的大脑组织比受教育程度低的参与者更不组织化。此外,在训练后发现theta频带相干性的大规模网络重构。尽管连接组方法在理解认知训练背后的大脑组织方面的应用研究有限,但这种方法对于表征认知功能非常有前景。

      关于工作记忆的研究主要集中在顶叶、额叶和顶枕叶脑区的alpha和theta频带之间的功能相互作用。Klimesch 报告长期记忆导致alpha频带的去同步,而短期记忆导致theta频带的同步。在不同的工作负荷记忆水平下,发现额叶和顶枕叶区域的theta和alpha频带相位同步性发生变化。

      在编码、存储和检索过程中,所有频带都观察到不同的拓扑属性。工作记忆任务需要高度的认知努力,导致聚类和模块配置降低,但alpha、beta和gamma频带的Eglobal增高。与静息任务相比,工作记忆任务表现出theta频带的高度功能整合和alpha频带的低功能分离。因此,在所有频带中,关于记忆的存储和检索都表现出明显的小世界拓扑结构。

D. 运动的连接性研究
      运动对日常任务至关重要,因为"人类行为是由心智(和大脑)与身体相互作用协调的"。对侧体感、同侧体感和运动区域与运动处理功能密切相关。在运动发生之前,信息从对侧半球转移到同侧半球,而运动之后则出现相反的模式。在运动准备过程中网络边的增加表明需要更高程度的信息交换以执行与运动相关的任务。此外,在手指运动任务的准备和执行过程中观察到可达性降低和中心性增加。

     不同的干预策略观察到不同的耦合模式。特别是,在骑自行车任务中,不同的强度水平在前额叶运动和中央区域的alpha和beta频带产生不同的大脑连接模式。此外,在体力和视觉疲劳任务后,顶叶和枕叶的同步性增加。在手指敲击任务中观察到beta频带的互信息值增加,反映信息流增加。最后,在从静息状态到手部运动的过渡期间,感觉运动区和前额叶区域之间表现出强烈的相互作用。

     在左右手运动任务中考虑了局部网络属性,以分类不同的运动。Ghosh等人表明,节点强度可以用于手部运动的分类,而无需分类器。在与运动相关的任务中,左侧感觉和双侧初级运动皮层的Enodal值增加,但在后顶叶区域降低。此外,研究人员观察到在手臂运动期间运动区域的功能连接增加,以及节点可达性降低和节点中心性增加。两年后,同一研究小组发现手臂运动显著降低了网络连接,主要在alpha和beta频带,并且只在左臂运动期间降低了加权PL。然而,CC和小世界性都没有显示出显著变化。Jin等人在手指运动和静息任务中观察到alpha和beta频带网络的小世界性经济性。在运动任务中,gamma和beta频带的内侧前运动和双侧前额叶皮质似乎具有更大的连接性和更高的CC,但PL较短。在顶上体感皮层的低beta和gamma频带的枢纽中发现的显著变化被证明可以表征视觉运动关联。在运动任务期间比较beta频带的谱相干性和虚相干性的节点度表明,在对侧运动皮层中谱相干性网络优于虚相干性网络。

E. 体力消耗的连接性研究
      体力消耗与工作负荷直接相关,反映了受试者在体力运动中可能面临的疲劳、压力、努力强度和不适。在与体力消耗相关的工作记忆任务中,观察到前额区域的部分theta相干性增加。最初观察到聚类系数呈现有趣的U形模式,其中theta频带的聚类系数在体力消耗任务和心理任务中都增加,但在任务变得更困难时显著降低。该研究仅限于前额脑区的研究;然而,未来的研究应该调查整个大脑的拓扑属性。Comani等人观察到在不同消耗水平下信息流的双侧连接模式。最近的一项研究探讨了骑自行车任务期间的功能性脑模式和网络拓扑。在EEG源水平上计算了六种不同难度的三个图论测量。局部效率在alpha和beta频带中保持恒定,表明疲劳并未改变脑网络的分离。由于对警觉性的高要求,alpha全局效率在骑车前后显著变化。然而,在高耐力阶段,beta频带的网络密度降低,显示了决策过程的影响。

F. 感知的连接性研究
     感知的研究需要比较几种认知功能(如注意力、意识和记忆)和任务持续时间。一项研究报告了在目标识别任务中额顶区域theta频带相位同步耦合的显著变化。此外,在目标的认知处理过程中,明显表现出低模块性、高聚类和节点枢纽之间的强烈相互作用。任务花费的时间直接影响参与者的情绪、心情、唤醒状态和认知负荷。Ghaderi等人研究了时间感知任务中大脑的非线性差异。过高估计时间和低估时间的两组参与者在beta聚类系数上表现出显著差异。此外,较高的任务努力感知在前额叶-运动区域显示出强烈的beta相干耦合。过高估计组的全局效率、传递性和度数低于低估组。

第六节 局限性和未来方向
      本研究的结果揭示了对特定任务执行过程中大脑连接性研究的日益增长的兴趣。本综述还表明,使用图论指标与EEG数据可以产生可靠和可行的结果;然而,要取得进一步进展,还需克服许多挑战。在神经人因工程学中应用图论指标将帮助科学家研究日常活动中的连接模式,并可能提供比日常环境中单通道特征更丰富的大脑活动信息。因此,未来的工作应该集中在不同实际应用中使用图分析测量。本综述讨论的研究缺乏生态有效性设计。关于疲劳和工作负荷任务的研究是在控制良好的模拟环境(即驾驶和飞行)中进行的。运动任务仅限于手指运动,如敲击,而消耗任务仅限于骑自行车活动。感知研究仅限于经典的奇异球实验。日常环境中经常执行的任务,如处理、抬举、抓握、抓取、拉动、推动、组装、分类、手动检查和下肢运动,尚未使用图论指标进行良好量化。因此,需要新的探索性研究来解决实际应用问题。

      EEG的高时间分辨率有助于捕捉大脑活动的快速和动态变化。很少有研究考虑神经信息的流向。这些研究使用Granger因果关系、DTF、PDC和广义PDC来量化两个信号之间的交互强度和因果关系。这些方法从信号Y的过去预测信号X的未来,反之亦然。由于频域方法能够提取不同频带的神经变化,因此更常被推荐用于EEG。

     EEG记录、预处理和分析过程中的方法选择显著影响功能连接估计和网络拓扑。这包括参考选择、伪影存在、EEG中体积传导的混淆效应(在信号空间中)以及反问题(在源空间中)。因此,未来的研究应探讨不同类型参考对连接性测量的影响,如中所讨论的。为减轻体积传导效应,应使用对体积不敏感的连接估计器。其他工作提供了减少体积传导效应的额外建议,如使用空间滤波器(拉普拉斯安装)、通过表面拉普拉斯应用电流源密度,以及实施源空间方法。尽管应用了源空间方法,但没有一种独特的方法可以在没有假设和限制的情况下解决反问题。此外,源空间方法难以实施,而且体积传导的影响永远无法完全消除。总的来说,正如Hassan和Wendling 所提到的:"所提出的方法都未能完全克服体积传导或场扩散问题的限制。"

      几项研究集中于分析EEG数据的静态功能连接。人脑是一个随时间动态变化的复杂系统。一种称为动态脑网络的扩展已被应用于追踪功能性脑网络的时空动态。它基于EEG源连接与滑动窗口方法的结合。在基于任务甚至静息状态的研究中都观察到连接模式随时间的重构变化。人脑网络不断重组以响应内部和外部刺激。情感基础研究和心理想象中提供了对神经机制的新见解;因此,在未来的研究中考虑功能性脑网络的动态分析具有潜力。

      一种新兴的估计和分类动态功能性脑状态的方法是应用基于聚类的分析,特别是k-means,从窗口协方差矩阵中进行。Allen等人提出了一种数据驱动方法,基于空间独立成分分析、滑动时间窗口相关和窗口相关矩阵的k-means聚类,来评估全脑动态功能连接模式。结果改善了对心理工作期间神经转换的理解。其他研究应用k-means聚类来识别随时间和跨受试者重复出现的功能连接模式。然而,该方法需要设置初始值和状态数量以实现良好的性能。

     许多尝试已经被用来减少肌肉和眼动伪迹。没有一种开发的方法可以保证数据完全无伪迹。目前还不知道减少伪迹在多大程度上会影响连接性测量。滤波被用来避免混叠并消除直流电的影响。然而,谨慎选择滤波至关重要,因为滤波会影响EEG信号的相位和振幅;因此,强烈建议使用零相位滤波器。

      功能连接模式和图论已被证明是表征脑信号的强大工具。然而,将这些测量作为输入参数来开发预测模型、自适应系统或监测系统的能力还很少被提及。神经人因工程学领域最具挑战性的目标之一是开发能够准确监测和检测操作者心理状态和工作中运动意图的智能系统这解答了RQ6。实施图论的另一个挑战是小世界性的吸引模型,它已被用于表征疲劳和运动。作为主要特征,高聚类系数和短路径长度提供了一个更加集成和更少分散的网络组织;然而,用于评估该模型的方法存在一些限制,应在未来加以考虑。

      脑连接研究需要高维统计分析方法,考虑多变量连接边以获得准确的模型参数估计。一个具有挑战性的研究领域是在基于任务的EEG功能脑网络中应用高级统计模型。

      另一个限制是难以得出具体结论,特别是在使用不同因素时,因为差异可能源于:(a)功能连接估计的差异; (b)阈值的差异; (c)记录参考位置的差异[; (d)现有边的数量; (e)样本量偏差; (f)与参与者人口统计相关的因素,如性别和年龄或教育水平; (g)受试者的大脑状态,如健康或病理;或(h)包括训练或未训练的参与者。

      需要进一步研究以避免在二元网络中任意选择阈值,从而最小化偏差。最近,最小生成树结果的应用已经最小化了由阈值处理观察到的偏差。拥有高假阴性值和阈值偏差的网络的可能性促使研究人员提出新的计算方法。而其他人则实施了加权网络,因为它更具信息量。在这种情况下,必须小心,因为权重的变化会影响网络拓扑。无权网络仍然主导文献,因为它通过消除最弱的连接来简化脑信号的复杂性。尽管提出了几种阈值处理方法,但没有可靠的方法能有效地过滤大脑信息。

     关于足够的电极数量以及电极数量对连接模式的影响存在一些争议。相当数量的研究使用了大量电极。最后,聚类系数和路径长度已被证明是定义功能整合和功能分离的关键指标。需要更多关注其他网络指标,如最大特征值和模体。

      节点和边是构建网络的基本元素,它们的选择显著影响网络属性估计。由大量节点和边组成的复杂网络需要先进的方法将图分解为越来越具有凝聚力的子图的嵌套层次结构。这些包括k-core、k-truss 和k-core-truss 。此外,大脑网络的复杂结构具有节点之间的复杂交互和大量的边。因此,已经开发了先进的方法来确定分层网络结构,包括Kernighan-Lin算法、谱二分法、分裂算法、凝聚算法和CN凝聚算法。

      关于女性功能性脑网络的研究存在显著空白。相当数量的实验仅在男性或男性和女性中进行。研究表明,男性和女性之间存在显著差异;因此,需要专门针对女性参与者的功能性脑网络研究来解决这些差异。Wang等人建议根据年龄或性别均匀分配参与者,以获得更准确的观察。此外,未来研究中的参与者数量应该更大,以实现更高程度的泛化。

第七节 结论

      本系统文献综述突出了使用任务诱发EEG数据研究功能性脑连接网络的增长趋势。图论指标已成为基于信息处理的全局整合和局部分离来表征功能交互的有价值和可靠指标。我们基于57篇文章的分析,展示了认知和运动功能的不同领域。我们还提供了关于选定应用的分布、功能连接的估计技术、图论指标、参与者数量和使用的电极数量的信息。此外,我们概述了功能性脑连接和图论的理论方面。这些结果为构建EEG功能性脑网络提供了有用的框架,以避免最常见的陷阱。

       较多的综述研究关注认知功能而非运动处理任务;然而,展示脑网络分析在现实世界任务中应用的研究有限,且缺乏生态有效性设计。实验结果的异质性可归因于多种因素,导致研究之间的结果不一致。在实践中,图论指标(主要是聚类系数和路径长度)是最常用的指标,因为它们反映了脑网络的功能和全局整合。大多数关于疲劳相关任务的研究已确认人脑整合信息的能力降低。更大的任务难度导致更少的分离过程和更集成的网络,主要在低频带。经济性小世界网络的存在已在手指运动、记忆的存储和检索、高工作负荷、增加的任务时间和涉及心理疲劳的任务中得到证实。对所审查文章偏差的评估显示存在高水平的偏差风险。解决随机序列生成、分配隐藏、选择性数据报告和流失问题应该可以减少未来出版物中此类偏差的风险。总之,使用图论指标的连接组分析可能为神经人因工程学领域的新思路铺平道路,最终导致更安全的工作设计。我们的系统综述结果应该有助于理解可应用于EEG数据分析的计算方法,主要使用图论。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值