放射组学是肿瘤学领域内一个很有前景且快速发展的领域,涉及从医学影像中挖掘定量的高维数据。放射组学有潜力改变癌症管理方式,其数据可用于辅助早期肿瘤特征描述、预后评估、风险分层、治疗计划制定、治疗反应评估和随访监测。然而,某些挑战延缓了放射组学在常规临床实践中的应用和接受度。本报告的目标是:(a)就放射组学在肿瘤学中的转化潜力和潜在影响提供见解;(b)探讨其推导过程中的常见挑战和误区,包括研究设计、技术要求、标准化、模型可重复性、透明度、数据共享、隐私问题、质量控制,以及导致放射科医师使用不够友好的多步骤流程复杂性;(c)讨论克服这些挑战和误区的策略;(d)提出提高放射组学临床应用和接受度的措施,同时考虑患者、医护人员和医疗系统的不同视角。本文发表在Radiology: Artificial Intelligence 杂志。
关键词:放射组学、肿瘤学、癌症管理、人工智能
总结:要充分发挥放射组学作为临床工具的潜力,必须改进解决多个挑战,包括数据标准化、基础设施支持,以及放射组学特征的可重复性、透明度、验证、可用性和可信度等方面的挑战。
要点:
■ 放射组学可以通过从肿瘤患者管理中常规使用的医学影像中提取定量数据来改善癌症影像评估。
■ 未解决的放射组学挑战阻碍了其临床实用性,使怀疑者因流程局限性而质疑其有用性。
■ 为最大化放射组学的临床潜力,加强多学科整合并解决数据标准化、基础设施支持、可重复性、透明度、验证、可用性和可信度等问题至关重要。
简介:
放射组学是肿瘤学领域一个很有前景且快速发展的领域,利用先进的计算技术从医学影像中挖掘高维定量数据。放射组学的前提是医学影像中包含关于肿瘤生物学、行为和病理生理学的宝贵信息,这些信息通过常规放射学视觉评估难以辨别。
鉴于放射组学能够从医学影像中提供高维定量数据,它有潜力改变癌症管理方式,其数据可用于辅助早期肿瘤特征描述、预后评估、风险分层、治疗计划制定、反应评估和随访监测。相应地,自不到十年前引入肿瘤学领域以来,肿瘤学领域的放射组学研究呈指数级增长。然而,尽管目前文献中已建立了大量放射组学研究,某些挑战延缓了放射组学在常规临床实践中的转化和接受度。要充分发挥放射组学作为临床工具的潜力,仍需改进解决这些挑战,包括数据标准化、基础设施支持,以及放射组学特征的可重复性、透明度、验证、可用性和可信度。
在本报告中,我们的目标是:
(a)就放射组学在肿瘤学中的转化潜力和潜在影响提供我们的见解;
(b)探讨其推导过程中的常见挑战和误区,包括研究设计、技术要求、标准化、模型可重复性、透明度、数据共享、隐私问题、质量控制,以及导致放射科医师使用不够友好的多步骤流程复杂性;
(c)讨论克服这些挑战和误区的策略;
(d)提出提高放射组学临床应用和接受度的措施,同时考虑患者、医护人员和医疗系统的不同视角。
放射组学与肿瘤学
影像检查对癌症患者而言仍然至关重要,为肿瘤科医生、外科医生和多学科患者管理团队的其他成员提供重要信息,帮助他们为每位患者确定最合适的治疗路线图。然而,全球范围内放射科医生和其他肿瘤科医护人员持续短缺且分布不同,同时全球癌症负担预计在2020年至2040年间将增加47%,全球病例将超过2800万例。这凸显了一个迫切需求:不仅要最大化影像提供的信息,还要解决全球日益增长的癌症负担带来的临床和经济挑战。
放射组学特征可分为两大类:(a)工程化或手工制作的特征和(b)深度学习衍生的特征。前者指在像素或体素层面应用预定义数学转换后可捕获的强度、形状和纹理相关信息,构成传统的、手动制作的元素。另一方面,后者指的是以端到端方式学习的高级计算技术和特征,主要使用卷积神经网络。在本报告中,我们重点关注工程化特征。放射组学有潜力增强当前影像提供的信息,并在专科医生短缺和癌症负担上升的情况下提供关键优势。放射组学在肿瘤学中的临床转化潜力贯穿患者全程,包括早期肿瘤检测、肿瘤特征描述和亚型分类、基因分析、预后评估、风险分层、治疗反应评估、治疗毒性评估、随访监测和生存结果评估。从根本上说,放射组学可以单独或与临床数据、实验室检查、语义放射学特征、组织学和/或基因检查结果相结合,提供与临床相关的肿瘤学结果的诊断或预后标志物。最终,其目标是作为临床决策支持工具,为多学科团队提供个性化和成本效益治疗决策的新信息。
自2012年放射组学引入肿瘤学以来,截至2023年12月6日,通过使用检索词:("radiomics")和("cancer"或"tumor"或"oncology")在PubMed上检索到近8000项评估放射组学在肿瘤学中应用的研究。然而,只有少数放射组学特征经过严格的外部检验(15-25),且没有一个在临床实践中获得常规采用。临床试验对推进医学知识、测试创新和通过严格的方法和标准化数据收集改善患者预后至关重要,最终导向更好的治疗策略。然而,只有少数放射组学研究是在临床试验环境中进行的,发表的包含临床试验数据的研究不到20项。值得注意的是,没有一项已发表的放射组学研究前瞻性地将放射组学作为临床决策支持工具来实施。
放射组学工作流程、挑战、常见错误及克服策略
放射组学是一个涉及多个专业领域和要素的多步骤过程。鉴于其跨学科性质,这些不同要素的整合容易出现挑战和错误,可分为三个主要层面:(a)临床相关性,(b)放射组学流程,和(c)发表偏倚。图1概述了从概念到临床实施的理想放射组学工作流程。
图1: 该图概述了从概念到临床实施的理想放射组学工作流程
临床相关性
理论基础:与其他临床研究类似,放射组学研究的主要目标是开发模型或特征标记来解决未满足的临床需求并积极影响患者管理。确定研究的临床相关性不仅是放射组学研究的基础,也是医学研究所有领域的基础,以确保研究的意义、影响力和伦理性。
错误:基于我们的研究经验,我们认为在界定研究临床相关性时的一个常见错误是在研究初期缺乏多学科团队各成员间的整合和沟通。在没有明确临床相关性和应用终点的情况下独立运作,加上缺乏对患者和医疗界的潜在益处,是一个常见且具有重要后果的错误。
克服错误的策略:为克服这一挑战,必须在项目开始时和整个研究过程中让多学科利益相关者参与其中。这确保了对临床需求和实际应用的全面理解。此外,明确定义临床效用(预期用途)以及对患者和社区的潜在益处有助于协调和确定研究重点。最后,团队成员间的定期会议和讨论有助于保持团队专注并促进动态交流和问题解决。
另一个值得思考的因素是成功的可能性。虽然放射组学是一种数据驱动的工作,但在空间尺度上将放射组学发现与细胞或分子事件联系起来可能比为人眼可辨别的放射学观察提供放射组学量化,或为影像和结果之间已知的生物学或病理学联系提供量化更具挑战性。事实上,虽然已经开发出针对分子或基因组表达的放射组学特征,但没有一个被转化为临床工具或用于前瞻性研究。这反映了在跨越空间尺度时从数据中过滤相关影像信号的挑战,这会影响观察的稳定性、可靠性和可重复性。
放射组学流程
执行前准备 —— 理论基础:这一步骤在开展研究之前是必需的,主要用于研究规划、评估可行性(有时需要收集试点数据以确定样本量)、评估高质量数据在模型开发和验证(包括外部测试)中的可用性。通常,这一初步阶段涉及建立研究团队、设计研究、制定假设、设定研究目标、明确纳入和排除标准,以及估计预期样本量。它还涉及决定收集相关的非放射组学数据(如临床、实验室和语义定量数据)以及选择要评估的影像模态。此外,还包括确定是否将纳入一个或多个时间线(如差异放射组学)。最后,包括寻求当地伦理委员会的批准,如果计划进行多中心研究,则需建立数据共享协议。
仔细设计放射组学研究策略也至关重要。这涉及通过创建直接非循环图构建因果框架,并在此框架内考虑放射组学特征的开发。由于放射组学仅依赖于可能存在偏倚的历史观察数据的收集,建模策略在减轻这些偏倚和确保结果有效性方面发挥着重要作用。
错误:再次强调,利益相关者之间缺乏凝聚力可能导致整体研究设计和目标的不一致。例如,放射组学特征与已建立的影像或临床评估工具之间缺乏比较或关联可能会降低其额外的临床价值。此外,样本量小或数据质量低会大大削弱所开发的放射组学特征的可靠性和质量。与其他类型的研究一样,数据质量与研究结果密切相关,因此集成到模型中的数据会影响参考标准终点的准确性。最后,忽视可能与样本选择、数据缺口、类别不平衡、社会经济差异、影像协议和扫描仪相关的潜在输入偏倚是一个重要错误,因为它可能会在输出模型中引入偏倚并降低结果的普遍适用性。
克服错误的策略:克服放射组学流程第一步中的可能错误是一项复杂的任务。这可能不仅需要研究团队的努力,还需要机构甚至学会和专业组织的参与。
研究团队应考虑以下策略:(a)遵循放射组学特定清单,如放射组学研究评估清单(CLEAR)、放射组学质量评分(RQS)和方法学放射组学评分(METRICS),后者最近由欧洲医学影像信息学学会与大型国际专家组合作开发,旨在从手工制作的放射组学到深度学习工作流程实现透明的方法学;(b)在研究开始时加强整合;(c)考虑样本量和多中心合作的需求;(d)实施数据质量控制以确保高质量输入;(e)主动识别和减轻可能的偏倚来源。关于初始样本量估算,众所周知,在进行放射组学研究的特征降维时,确保模型验证的充分样本量至关重要。通常建议将训练样本量的约三分之一用于验证目的。然而,这一要求可能因数据集的平衡性而异(如数据集中"阳性"或"阴性"事件的数量)。在数据高度不平衡的情况下,可能需要更大的样本量以保持模型的稳健性和可靠性。例如,考虑开发10个特征的放射组学模型的情景。为遵循三分之一验证标准,需要至少133个样本,其中100个用于训练,33个用于验证。充足的样本量和对数据平衡性的仔细考虑是确保放射组学模型准确性和潜在普遍适用性的关键步骤。
在无法避免处理不平衡数据的情况下,不平衡数据代表潜在的偏倚来源。认识到这一挑战,研究团队可以采用各种策略来有效解决它。例如,可以应用数据预处理技术,如对少数类过采样或对多数类欠采样。此外,提取为两个类别提供信息的相关放射组学特征也很重要。算法的选择也可能有帮助,建议选择那些对不平衡数据具有鲁棒性的算法,如随机森林等集成方法或具有成本敏感学习能力的算法。使用包括k折在内的交叉验证策略对于在训练和测试阶段的不同折中保持不平衡分布变得至关重要。最后,还强调持续监控以确保持续意识到并减轻模型性能的任何潜在退化。
促进机构和学会间的外部测试需要深思熟虑的方法。可以考虑几个关键策略来促进合作并确保研究发现的可靠性。首先,促进专家间的协作专业知识并鼓励形成多学科和多中心团队可以增强集体知识基础。其次,简化研究流程和伦理审批,同时实施优先考虑隐私措施的安全数据共享协议,这在促进外部测试和支持多中心合作方面至关重要。最后,加强数据管理基础设施至关重要。分配专用资源确保大型数据集的有效处理,同时促进与现有临床工作流程和工具的无缝集成。这些策略共同促进建立外部测试的强大框架,培养信任和合作。
数据收集—— 基本原理:高质量的影像和临床数据能有效反映癌症的行为和异质性。这构成了可靠的放射组学研究的基础,因为所收集数据的质量直接影响后续分析的可靠性和相关性。
错误:错误通常源于缺乏流线型的数据收集工作流程、由非专业人员进行数据整理以及成像参数的异质性。图像采集参数极大地影响放射组学工作流程的各个阶段,从特征提取到模型构建,从而影响放射组学分析的稳健性和可重复性。在数据收集步骤中考虑这些参数至关重要,以确保收集的成像参数能在模型构建和结果解释过程中得到考虑。相反,根据放射组学特征和样本量的不同,收集数据的异质性也可能带来机会,增强所开发的放射组学特征的普适性。
克服错误的策略:为克服数据收集相关的错误,可以实施明确定义和优化的工作流程,包括清晰的数据收集流程、标准化的临床和放射学报告以及标准化的成像方案。值得注意的是,不同的已发表指南都建议在放射组学流程中实现标准化,但对于如何实现尚无统一共识。
此外,已发表研究中的大多数放射组学特征都是基于"最小"或有限的数据集开发的,这使得在面对以前未见过的数据时,真实世界的临床转化变得具有挑战性。因此,需要解决数据量和数据多样性问题,以创建可以更广泛推广的有意义的放射组学特征。多中心研究和大规模数据整理的需求以及建立精心策划的影像数据库的重要性怎么强调都不为过。大规模数据整理项目(如欧洲癌症影像计划)和现有的癌症影像数据库(如癌症影像档案库)将在托管相关影像数据方面发挥越来越重要的作用,推动放射组学研究和临床转化。最后,让所有利益相关者参与数据收集并建立健全的质量控制程序是数据收集过程的重要组成部分。
影像分割和预处理—— 基本原理:图像分割的目标是包含肿瘤、肿瘤周围区域或肿瘤亚区域(也称为肿瘤栖息地)的代表性二维区域(即感兴趣区域)或三维体积(即感兴趣体积)。图像分割可以使用手动、半自动或自动方法进行。同时,图像预处理(如过滤、标准化和重采样)有助于提高图像质量,并可能同时改善不同扫描仪和成像技术之间放射组学特征的标准化和可重复性。在进行放射组学分析之前,准确的分割极其重要,以包含具有可重复性和代表性的感兴趣区域。
批次效应调整Combat(ComBat)是一种最初设计用于消除微阵列数据批次效应的统计方法。然而,它也被应用于放射组学研究中的图像标准化和协调。ComBat使用经验贝叶斯模型来调整批次效应,通过建模批次和基因表达水平之间的关系。在放射组学中,ComBat可用于调整可能在数据集之间引入系统性差异的采集参数,允许更准确地比较和整合来自多个来源或扫描仪的数据。ComBat在放射组学工作流程中的应用通常发生在特征提取和选择之前的预处理或标准化阶段。通过早期消除批次效应,管道中的后续步骤(如特征选择和机器学习模型开发)可以受益于更准确和可比较的数据。需要注意的是,像ComBat这样的协调技术应该谨慎使用,只在必要时使用,因为如果没有适当验证或使用不当,它们可能会引入额外的计算复杂性和潜在偏差。最后,我们认为ComBat由于其在未见数据表示方面的局限性而未被普遍接受。
错误:图像分割最常见的缺点与分割错误、读者间和读者内变异性以及与临床工作流程整合不足或用于图像分割的软件功能不足有关。分割通常需要分析多个扫描,并采用比较当前扫描与基线图像和使用多平面重建等技术来进行精确描绘。当分割软件没有像医疗影像存档和通信系统那样的完整功能,或当在没有医疗影像存档和通信系统工作站上其他图像序列的情况下进行分割时,可能会影响准确性。同时,图像预处理虽然通常需要协调来自不同来源的数据,但可能会掩盖相关的放射组学特征。图像预处理包括各种步骤,包括空间重采样和强度离散化,如果不经过仔细考虑就应用这些步骤,可能会无意中改变放射组学特征的固有特征。例如,空间重采样涉及改变体素大小,可能导致信息丢失或失真。同样,强度离散化(将像素值分类为离散区间的过程)可能会过分简化数据中存在的复杂模式。认识这些细微差别并在预处理过程中保持谨慎至关重要,以避免可能损害放射组学特征真实性和可解释性的意外后果。
克服错误的策略:为避免这些错误,应该在分割前进行培训课程,使操作者熟悉流程并避免陷阱。在可能的情况下,开发和整合自动分割算法可以大大减少人为疲劳和错误。此外,将严格的质量控制措施作为工作流程的组成部分可以帮助确保数据可靠性。在由不同成分构成的异质性肿瘤的背景下,不同的研究采取不同的方法来分割肿瘤。一些研究选择从感兴趣区域或感兴趣体积中排除坏死、钙化和血管等内部结构,而其他研究则在肿瘤分割中包含这些元素。这种可变性突显了在每个放射组学项目中需要更标准化的组织分割方法。重要的是要认识到,即使是分割工具的选择也可能对放射组学结果的准确性和可重复性产生实质性影响。例如,Owens等人的研究比较了两种分割方法,发现从病变大小工具包轮廓提取的放射组学特征在观察者之间和观察者内表现出更高的可靠性。该研究进一步证明,半自动分割工具使没有正式临床培训的观察者能够在评估肿瘤分割方面达到与医生相当的结果。
关于预处理过程中可能掩盖相关放射组学特征的问题,需要采用细致且有完善文档记录的方法。可以考虑以下策略:(a)清晰定义和记录每个预处理步骤,(b)在代表性数据集上严格验证这些技术,(c)定期将预处理数据与原始图像进行比对,(d)让领域专家参与决策。
特征提取、特征选择和模型构建—— 基本原理:这一步骤的目标是确定既具实质性又可重复的放射组学特征,重点优先考虑那些具有信息量、稳定且非冗余的特征,同时评估它们与肿瘤区域生物学方面或结果变量的关联,并构建具有临床意义和稳健性的模型。
错误:在这一步骤中可能发生几个错误,最常见的包括:
(a)缺乏对最近更新的图像生物标志物标准化倡议(IBSI)建议的标准化遵守,这可能导致特征工程的不一致性,并阻碍跨研究和数据集的比较;
(b)特征提取错误,如选择不当的算法,可能引入偏差并降低数据表示的质量;
(c)选择性挑选特征,可能导致模型过拟合;
(d)未进行适当校正的多重检验,可能妨碍识别由于偶然而非肿瘤特征导致的潜在虚假模式;
(e)缺乏对模型构建过程的透明记录,包括数据预处理和算法选择,这可能影响模型的可解释性和可重复性;
(f)样本量不足,可能导致过于乐观的模型表现和有限的普适性。
克服错误的策略:应该采用适当的特征提取算法和稳健的统计方法,在信息保留和噪声减少之间取得适当平衡。特征选择方法的实施方式应避免向模型暴露来自留存测试集的信息,从而导致过于乐观的性能估计。严格和系统的模型构建方法包括:有适当的样本量、采用严格的特征选择、实施多重检验的统计校正、确保谨慎的数据处理以防止数据泄漏,以及在整个过程中保持透明度,以确保模型的可靠性和可用性。
在小数据集的情况下,使用嵌套交叉验证方法进行特征选择可以帮助减少偏差并以无偏的方式选择特征。嵌套交叉验证包括一个外循环用于评估模型性能,和一个内循环用于在每个外部折叠中选择特征。这种方法可以提供更可靠的模型性能估计并帮助防止过拟合。
值得注意的是,传统的特征选择智慧是基于特征与结果变量相关性的统计显著性水平来优先排序。这可能导致包含缺乏可解释性的特征。形状相关的一阶特征,以及在某种程度上的纹理特征(如灰度共生矩阵[GLCM]、灰度游程矩阵[GLRLM]、灰度大小区域矩阵[GLSZM]和相邻灰度差异矩阵[NGTDM])与高阶特征(如分形维数和高斯拉普拉斯)相比可能更具可解释性,并可能增加放射组学的部署和使用的信心。虽然理解提取过程和可解释性对确保临床有用和准确的模型可能不是必需的,但在预测建模中优先考虑可解释性可以大大增强信任、可靠性,并最终提高临床转化和参与的有效性。此外,法律考虑也进一步强调了临床环境中可解释性的重要性。
在存在大量特征的情况下,应用多重检验校正(如邦弗朗尼校正或假发现率校正)变得至关重要,以减轻虚假发现或假阳性的风险。虽然在特征选择之前进行校正以全面解决这个问题似乎很直观,但实际考虑可能限制这种方法的可行性。挑战在于在最小化假阳性和保持检测相关特征的能力之间取得平衡。因此,考虑到分析的具体阶段和其计算需求,谨慎应用校正方法对于稳健可靠的放射组学研究至关重要。
此外,在处理从医学图像中提取的大量纹理特征时,降低其维度对提高模型性能和防止过拟合至关重要。为选择最重要的特征,相关性、冗余性和泛化能力是最需要考虑的标准。相关性指的是每个特征与目标预测变量的相关程度。冗余性有助于消除提供类似信息的重复特征。例如,强相关的特征可能是冗余的。尽管方差分析(ANOVA)是一种常用的特征选择方法,但由于输入变量之间的高度相关性,其在放射组学中的应用存在重大限制。这个问题与ANOVA对这种相关性不敏感有关,导致次优结果。因此,建议在应用ANOVA之前考虑使用其他方法,如最小绝对收缩和选择算子(LASSO)、最小冗余最大相关(mRMR)、递归特征消除(RFE)和Boruta进行特征选择。这些方法专门设计用于有效处理高度相关的放射组学特征,可能提供更稳健的放射组学特征。此外,它们可以与ANOVA或其他统计方法结合使用,以改善特征选择的整体性能,确保临床应用的最准确和有效结果。在数据集间具有一致相关性的特征具有更强的泛化能力。像LASSO这样的正则化回归技术(惩罚较少用的特征)常用于放射组学中,基于相关性和冗余性标准自动选择特征。LASSO是最流行的自动方法之一。聚合多个选择算法排名的集成方法也增强了稳健性。维度减少目标指导整个过程,无论是优化模型准确性、效率还是其他目标。对于决定理想特征数量没有明确的规则,但根据经验证据,通常建议每10到15个训练样本对应一个特征(重要!)。
最后,如果一个类别远比其他类别更普遍,一个常见的错误是使用准确率作为模型性能的评估指标。准确率定义为正确分类的样本数与样本总数的比值。在不平衡数据集中,简单地预测多数类的虚拟分类器可能获得高准确率。在这种情况下,F1分数是更好的选择。它定义为精确率和召回率的调和平均值,其中精确率是真阳性与真阳性和假阳性之和的比值,召回率是真阳性与真阳性和假阴性之和的比值。F1分数同时考虑假阳性和假阴性,使其受类别不平衡的影响较小。它是衡量模型在不平衡数据集中正确分类实例能力的更稳健指标。
验证—— 基本原理:这一步骤的目标是验证可推广的放射组学特征,以预测所需的终点指标。
错误:不当的数据管理,例如测试集信息泄露影响训练集。鉴于可能在图像、目标或概念层面发生的各种漂移,模型验证不应该是静态的。
克服错误的策略:应该实施外部测试集来验证构建的模型,因为它们将减少偏差并可能导致更具普适性的放射组学特征。通过对一段时间内的连续前瞻性患者评估模型的时间性能,可以显示模型对外部变化的稳健性(即扫描仪软件"静默"更新前后)。理想情况下,模型应该部署在机器学习运维(MLOps)平台上,以便能够监控其性能并检查可能触发模型再训练会话的输入数据漂移,从而保持模型的更新。模型老化是一个已知的效应,可能导致模型错误和变异性的逐渐增加,如果不加以处理,可能通过错误预测对患者造成潜在伤害风险。
如最近研究所强调的,放射组学领域的一个重要限制是放射组学特征在不同数据集间的变异性。这些特征通常只有在应用于与其原始训练数据相似的数据时才表现出高性能。这种限制影响了放射组学特征的普适性和可重复性,使得普遍临床应用面临挑战。除了患者人口统计学特征外,数据表示的变异可能来自于不太明显的因素,包括患者的社会经济地位、医学影像设备供应商、型号类型、软件版本、采集协议,以及医学影像检查患者选择的具体本地指南。这种复杂性强调了图像采集和特征提取过程标准化的必要性。减轻这些挑战的一种方法是使用本地数据重新训练或微调现有模型,为每个医院环境创建定制的模型版本。然而,这种方法带来了实质性的监管挑战。此外,开发在多机构数据集上训练的协作模型可能促进创建更稳健和普遍适用的放射组学特征。
发表偏倚
发表偏倚倾向于发表正面结果的研究而非报告负面结果的研究,这导致对放射组学过于乐观的看法,可能对其可重复性产生不利影响并阻碍临床接受。此外,许多已发表的研究忽略提供关于图像预处理和特征提取方法的全面细节,包括体素大小重采样或箱宽设置等方面。这种透明度的缺乏可能妨碍结果的可重复性。解决发表偏倚不仅需要鼓励发表负面或不确定的发现,还需要倡导使用放射组学特定的检查清单和质量评分,以提高研究方法的整体透明度和严谨性。
放射组学研究和实施中的未满足需求
尽管在放射组学研究方面已发表了超过7000篇文章,但放射组学向患者护理的临床转化却很差。这导致一些怀疑论者宣称,由于在整个放射组学流程中遇到的当前限制,放射组学不太可能在临床上有用。然而,乐观主义者和支持者坚信需要做更多工作来创建更稳定、可重复、可复制、可解释和可推广的放射组学特征,从而能够为有意义的临床结果提供独特的见解。也许中间立场是探索和解决当前阻碍放射组学临床转化进展的放射组学发展中未满足的需求。
放射组学是数据驱动的研究,高质量注释数据的匮乏限制了数据探索的广度和深度。大多数放射组学特征都建立在不到1000个数据点的有限数据集上,与工作流程中通常生成的数百个放射组学特征相比,这是一个很小的数字。尽管我们使用当前的标准化和交叉验证技术做出了最大努力,但特征选择过程中仍然存在不确定性。因此,通过创建或链接图像数据库和存储库来收集更大的数据量将是为放射组学研究提供数据的重要一步。此外,如前所述,放射组学特征常常缺乏可解释性,这也可能阻碍其临床采用。虽然可解释性对确保临床有用和准确的模型可能不是关键,但优先考虑可解释的模型可以大大增强信任、可靠性,并最终提高临床转化和参与的有效性。
数据可用性有限的部分原因是因为图像分割和注释是一项耗时的任务,依赖于经过培训的放射科医生和/或技术人员来完成。由于放射组学流程不在主流临床工作流程中,这些任务通常是回顾性进行的。在当前放射科人力资源危机的情况下,前瞻性创建数据注释的能力是有限的。因此,人工智能辅助的图像注释和分割是自动前瞻性创建可用于放射组学工作流程的大型数据集的关键。
虽然已经讨论了很多关于放射组学工作流程标准化的问题,但已发表的指南之间对于如何实现这一点并没有达成普遍共识。由于供应商系统和医院之间的协议存在广泛的异质性,扫描参数的标准化只在试验环境或跨几个中心时才具有实用性。然而,我们的大多数成像数据仍然来自现实世界且是回顾性的,这些数据无法进行如此严格的标准化。因此,在不同扫描仪系统的异质数据集中搜索有意义的放射组学特征时,大型数据集仍然至关重要。认识到这些数据集中预期的多样性,采用后提取技术(如协调化)成为在现实世界队列中改善模型性能的有价值策略。即使我们允许从临床试验数据创建有意义的放射组学特征,随着时间推移,这种特征的有效性也是不确定的,因为机器升级和性能漂移可能影响特征的可靠性。
放射组学用例的相关性不容忽视,因为许多已发表的研究质量较低或一般,可能无法解决有用的临床问题。在寻找相关且广泛可推广的放射组学特征时,初步努力可能集中在可解释的特征上,其中结果更紧密地与成像表型相联系,而不是跨空间尺度(如基因表达)。后者可能因成像数据中较差的信噪比而受到影响,如果不同时考虑所有潜在的因果推断,可能导致虚假结果。
进行完整的放射组学流程和数据分析需要超出大多数放射科医生培训范围的技能。因此,放射科医生应该为那些超出定义研究问题、识别研究人群、执行图像分割和注释以及协助解释结果范围的工作流程元素做好准备和接受教育。放射科应该认识到为人工智能和影像数据科学做好准备所需的投资。特别是,放射科医生应该了解未来放射科所需的技能组合和新人员,以及使放射组学和人工智能工作流程可操作化所需的信息学基础设施。图2总结了放射组学工作流程中最常见的错误,并提出了克服这些错误的策略。
图2:放射组学工作流程中最常见错误及克服这些错误的建议策略总结
PACS = 医疗影像存档和通信系统。
放射组学:从承诺到临床应用
引导放射组学的发展历程不仅依赖于技术进步和科学创新。它还依赖于说服最终用户认可其价值的能力。在放射组学的环境中,我们应该考虑不同的视角,包括患者;医疗保健提供者(包括放射科医生和非放射科医生);以及医疗保健系统。除了众所周知的构建准确、可重复和稳健的放射组学模型的重要性外,理解用户在放射组学临床转化过程中的需求、信任、偏好和行为也至关重要(图3)。
图3:图示显示在放射组学转化为临床实践之前需要考虑的不同视角
患者视角
医学的传统家长式方法正逐渐向更以患者为中心的范式演变,其中患者在塑造其医疗保健决策方面发挥着越来越重要的作用。随着放射组学的发展,将其临床应用与患者的偏好、需求和价值观保持一致至关重要。考虑到其在其他创新计划中的已证实效益,可以考虑包括教育、沟通、遵守法律和监管标准以及保护患者隐私的框架。在放射组学的临床转化过程中应考虑知情同意和共同决策。尽管一些技术定义难以理解,但医生能够尽可能向患者解释临床意义是很重要的。患者应该能够获得关于放射组学如何有助于他们的诊断和治疗的信息,并且他们应该感到有能力提出问题、表达他们的担忧,并积极参与关于在其医疗保健中使用放射组学的决策。
医疗保健提供者的视角
医疗保健提供者,包括放射科医生、肿瘤科医生和其他专科医生,将在患者护理工作流程中使用放射组学工具方面发挥核心作用。由于怀疑可能成为采用的障碍,放射组学之旅应该从一开始就包括各种利益相关者,以建立对工具可靠性、可重复性和准确性的信任。医疗保健提供者必须接受全面教育,以了解放射组学的能力和局限性,批判性地评估其证据基础,并将其无缝整合到临床工作流程中。简单性、自动化和不同系统之间的易于整合是关键因素。医疗保健提供者已经在与职业倦怠作斗争,引入增加其日常工作复杂性的工具可能加剧焦虑并导致倦怠增加,最终对患者结果产生不利影响。放射组学解决方案的目标应该是与医疗专业人员的偏好和工作流程保持一致,以促进其在临床实践中的整合。此外,医疗保健提供者必须能够评估放射组学在特定患者群体中的临床效用,就其使用与患者进行共同决策,并跨学科合作以最大化其影响。在这个不断发展的领域,持续学习计划至关重要。最终,放射组学还应与以患者为中心的护理保持一致,提高诊断准确性和治疗计划,同时维护患者隐私并改善医疗保健结果。
医疗保健系统的视角
尽管医疗保健系统本质上复杂,但潜在的优先事项可以总结如下:
(a) 患者结果和成本优化(放射组学工具应优先展示临床效用和成本效益,具有明确的终点指标,这些指标与医疗保健系统针对特定疾病场景的优先事项保持一致),
(b) 可行性(与现有系统和数据共享策略的兼容性对于无缝整合至关重要),
(c) 监管和伦理考虑(密切且前期遵守既定标准和指南,强调患者隐私和数据安全,这对解决医疗保健系统的关切必不可少)。因此,让医疗保健系统利益相关者参与并了解他们的优先事项对于塑造未来的放射组学工具并确保它们与整体系统目标和需求保持一致很重要。
结论
总之,本报告对放射组学在肿瘤学中的潜在使用进行了批判性评估。虽然放射组学通过挖掘医学图像的定量高维数据有潜力为癌症管理增加价值,且已发表了大量关于放射组学的文章,但仍有重要的挑战未得到解决,这些挑战阻碍了其临床转化。为了弥合放射组学潜力与其临床转化之间的差距,本报告强调了当前未满足的需求、可以解决放射组学流程中重要错误的策略,以及包括多个利益相关者视角的重要性,以增强放射组学在肿瘤学环境中的可接受性和广泛临床使用。