文/邱彬
摘要
智能网联汽车大数据已经成为推动自动驾驶技术迭代更新,促进产业生态创新发展的基础性战略资源,随之而来的用户隐私和数据安全问题受到了社会各界的广泛关注。分析了智能网联汽车数据区别于一般大数据的典型特征,针对不同类别的数据进行了权属问题研究,认为除基础属性信息外,其他数据都应在匿名处理后进行分析应用。研究提出了目前数据产业化应用的4种典型场景。在国内外关于汽车数据安全保护相关法律法规的框架下,从国家、行业、企业3个层面分析提出了规范数据采集处理、强化数据挖掘应用的策略建议。
智能网联汽车作为新一轮科技革命和产业融合创新的重要载体,已成为全球汽车产业发展的重要战略方向,正在全面重构交通出行模式和社会运行方式。由于搭载先进传感器,融合网络通讯技术,具备智能决策和控制等特点,智能网联汽车在运行过程中将会产生大量的基础数据,其与人工智能、大数据等新一代信息技术的深度融合,不仅可以让汽车向高等级自动驾驶演进,帮助政府部门 做好安全监管和事故预警,还能在新车改进研发、个性化服务等多方面发挥重要作用。
然而,在有效挖掘和利用智能网联汽车数据的潜在价值,推动产业生态蓬勃发展的同时,不可避免地带来了车辆运行安全、用户隐私泄露等一系列数据安全问题。2016年,来自挪威安全公司Promon 的专家在入侵用户手机后,窃取了某车主app 的用户名和密码等数据,然后登录该品牌车联网服务平台,进而可以随时对车辆定位、追踪,并可解锁、启动车辆。
我国高度重视数据安全监督管理,2020年,国家发改委等 11 部门联合发布的《智能汽车创新发展战略》中提出:建立覆盖智能汽车数据全生命周期的安全管理机制,明确相关主体的数据安全保护责任和具体要求。实行重要数据分类分级管理,确保用户信息、车辆信息、测绘地理信息等数据安全可控。
如何在保障公共安全和个人隐私的基础上,充分促进数据潜在价值的挖掘利用,是发展智能网联汽车新技术、新业态必须要面对和解决的问题。因此,有必要深入研究智能网联汽车数据权属特点及安全机制等关键问题,在国家关于隐私保护和数据安全管理要求的框架下,提出行业和企业规范数据采集处理、强化数据挖掘应用的策略建议,以提升车联网大数据综合应用和数据安全水平。
1 智能网联汽车数据的典型特征
与传统汽车仅能提供简单的信息服务及执行驾驶员的驾驶操作不同,智能网联汽车能够提供强大丰富的娱乐交互功能,且当处于自动驾驶或辅助驾驶模式时,需要采集大量的外部环境数据,接收高 精地图、路测单元关于道路信息的数据,并通过感知、决策、控制等复杂算法进行分析运算,从而达到智能控制车辆的目的。因此,智能网联汽车数据除具有一般大数据的4V特点(海量、多样、高速、价值)外,还具有以下3个方面的显著特点。
1.1 智能网联汽车数据高度还原真实世界
智能网联汽车具有融合了摄像头、激光雷达、毫米波雷达等一种或多种方案组成的感知系统,强大的数据采集能力,长时间在公共道路上行驶,使其可以获得海量、高精度的关于车辆周边行人、车 辆和建筑物等目标物的详细信息。
1.2 智能网联汽车数据关乎公众社会安全
一方面,自动驾驶系统依靠采集和接收的外部环境数据进行分析运算,产生驱动车辆运行状态改变的控制数据,鉴于目前自动驾驶软硬件系统的