重新认识微分和导数

之前写过不少关于微分和导数的文章:

今天这篇文章再换一个角度来谈论微分和导数,让我们从微分出现的原因说起。

1 微分出现的原因

出于种种原因,我们可能想去求曲线的长度、曲面梯形的面积:

a 和b 之间的曲线长度

a 和b 之间的曲边梯形的面积

求解思路是这样的,以求曲线长度为例,将曲线分为多个部分,每一部分都用切线来近似曲线:

划分的越细,直到划分为无穷多份,最终这些切线的长度加起来就是曲线的长度:

求曲边梯形面积也是类似的,用小矩形来近似曲边梯形的面积,随着小矩形的增多最终得到曲边梯形的面积:

上面的思想就是微积分的核心思想,“以直代曲”。曲线长度、曲边梯形就是“曲”,切线、小矩形就是用来近似(代替)的“直”,这种“直”就是微分。关于这里还不了解的可以看“微分是什么?”这篇文章。

2 微分与导数

先不谈曲边梯形,本节先来回答曲线的微分是什么,也就是可以近似曲线的直线是什么?

2.1 几何分析

下面结合几何来理清一下求解的思路。假设有曲线f(x) 和直线g(x) ,如果两者完全相等,那么有:

 很显然这在整个曲线和直线上是做不到的,但肯定可以做到在某点上相等,比如让它们在x_0 点相等,从几何上看就是曲线f(x) 和直线g(x) 在x_0 点相交:

下面要更进一步,不过不要太贪心,只希望两者在x_0 附近尽量相等。比如像下图一样,在(x_0-\Delta x,x_0+\Delta x) 的区间内,曲线f(x) 和直线g(x) 相差很小:

这点如果可以做到,那就可以按照上一节说的,将曲线分成n份,每份都用各自的微分来近似。

2.2 代数分析

通过几何分析,思路已经理清楚了,要找的微分(直线)需要满足以下两点:

        (1)曲线f(x) 和直线g(x) 要交于x_0 点。假设直线g(x) 的斜率为k ,那么根据点斜式,可得直线函数:

g(x)=f(x_0)+k(x-x_0)

这里面就是k 还未知,求出了k 就得到了想要的直线,也就得到了微分。

        (2)曲线f(x) 和直线g(x) 要在(x_0-\Delta x,x_0+\Delta x) 的区间内尽可能相等。用代数表示即为:

f(x)-g(x)\approx 0,\quad x\in(x_0-\Delta x,x_0+\Delta x)

有约等号的式子是没法计算的,引入高阶无穷小o(\Delta x) 可以将约等号去掉:

f(x)-g(x)=o(\Delta x),\quad x\in(x_0-\Delta x,x_0+\Delta x)

高阶无穷小o(\Delta x) 的意思就是在\Delta x 这个范围内无限的接近于 0。至于为什么它无限接近于 0,以及为什么是高阶无穷小,在文章的最后会进行补充说明。

2.3 解出直线的斜率k

经过上面的分析我们有了:

\left.\begin{aligned}     g(x)=f(x_0)+k(x-x_0)\\     f(x)-g(x)=o(\Delta x) \end{aligned}\right\}\implies f(x)-f(x_0)-k(x-x_0)=o(\Delta x)

这已经足够让我们解出直线的斜率k 了。注意到\Delta x=x-x_0 ,可以进行如下变形:

\begin{aligned}     f(x)-f(x_0)-k(x-x_0)=o(\Delta x)         &\implies f(x)-f(x_0)-k\Delta x=o(\Delta x)\\         &\implies \frac{f(x)-f(x_0)-k\Delta x}{\Delta x}=\frac{o(\Delta x)}{\Delta x} \end{aligned}

两侧取极限可得:

\lim_{\Delta x\to 0}\frac{f(x)-f(x_0)-k\Delta x}{\Delta x}=\lim_{\Delta x\to 0}\frac{o(\Delta x)}{\Delta x}\implies \lim_{\Delta x\to 0}\frac{f(x)-f(x_0)-k\Delta x}{\Delta x}=0

略微作一下化简可得:

k=\lim_{\Delta x\to 0}\frac{f(x)-f(x_0)}{\Delta x}

至此我们就求出了k ,也就找到了f(x) 的微分(直线g(x) 的形式还需要变一下才是真正的微分,关于这点可以参考“dx,dy是什么?”这篇文章)。

这个k 在微积分中又有一个专门的名字,称为f(x) 的导数。k 如果存在(因为k 是通过极限求得的,这个极限有不存在的可能),那么就称f(x) 可导。

上面的思路还可以进一步思考,如果要找最接近曲线f(x) 的多项式曲线呢?这会得到泰勒公式,就留给大家作课后习题吧。

3 补充说明

这里补充说明两点:

        (1)高阶无穷小o(\Delta x) 为什么表示在(x_0-\Delta x,x_0+\Delta x) 的区间内无限接近于 0 ?这是因为它满足:

\lim_{\Delta x\to0}o(\Delta x)=0

上面这个极限式意味着\Delta x 越小,也就是越接近于x_0 点,o(\Delta x) 越接近于 0。用动画表示就是:

上图中绿线就是曲线f(x) ,蓝线为微分,可以看到随着\Delta x 缩小,两者之间的距离o(\Delta x) 也无限接近于 0。

        (2)为什么一定要高阶无穷小?同阶无穷小行不行?关于这点可以参考“为什么算出来的圆周率 π 等于 4 ?”这篇文章。


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值