微积分常用导数总结 - 清晰版 - 当然每一个都要熟记啦

( C ) ′ = 0 ( x α ) ′ = α x α − 1 ( sin ⁡ ( x ) ) ′ = cos ⁡ ( x ) ( cos ⁡ ( x ) ) ′ = − sin ⁡ ( x ) ( tan ⁡ ( x ) ) ′ = 1 cos ⁡ 2 ( x ) = sec ⁡ 2 ( x ) ( cot ⁡ ( x ) ) ′ = − 1 sin ⁡ 2 ( x ) = − csc ⁡ 2 ( x ) ( arcsin ⁡ ( x ) ) ′ = 1 1 − x 2 ( arccos ⁡ ( x ) ) ′ = − 1 1 − x 2 ( arctan ⁡ ( x ) ) ′ = 1 x 2 + 1 ( a r c c o t ( x ) ) ′ = − 1 1 + x 2 ( a x ) ′ = ln ⁡ a ⋅ a x ( log ⁡ a x ) ′ = 1 ln ⁡ a ⋅ 1 x \begin{aligned} &(C)'=0\\ &(x^\alpha)'=\alpha x^{\alpha-1}\\ &(\sin(x))'=\cos(x)\\ &(\cos(x))'=-\sin(x)\\ &(\tan(x))'=\frac{1}{\cos^2(x)}=\sec^2(x)\\ &(\cot(x))'=-\frac{1}{\sin^2(x)}=-\csc^2(x)\\ &(\arcsin(x))'=\frac{1}{\sqrt{1-x^2}}\\ &(\arccos(x))'=-\frac{1}{\sqrt{1-x^2}}\\ &(\arctan(x))'=\frac{1}{x^2+1}\\ &({\rm arccot}(x))'=-\frac{1}{1+x^2}\\ &(a^x)'=\ln a\cdot a^x\\ &(\log_ax)'=\frac{1}{\ln a}\cdot\frac{1}{x}\\ \end{aligned} (C)=0(xα)=αxα1(sin(x))=cos(x)(cos(x))=sin(x)(tan(x))=cos2(x)1=sec2(x)(cot(x))=sin2(x)1=csc2(x)(arcsin(x))=1x2 1(arccos(x))=1x2 1(arctan(x))=x2+11(arccot(x))=1+x21(ax)=lnaax(logax)=lna1x1


相关链接

常见函数泰勒公式展开
常用等价无穷小的整理


2021年11月12日18:41:09

<think>嗯,用户让我介绍一下常用公式。首先,我需要确定用户的需求是什么。可能是一个学生正在学习数学或者物理,需要复习一些基础公式,或者是刚开始学习,想了解有哪些常用的公式需要掌握。用户可能希望得到一个分类清晰的列表,涵盖不同领域的公式,比如代数、几何、微积分等等。 接下来,我要考虑如何组织这些公式。按照学科分类是比较直观的方法,比如代数、几何、三角函数、微积分、概率统计,甚至物理中的经典公式。这样用户可以根据自己的需求快速找到相关部分。 然后,每个分类下有哪些核心公式呢?代数部分,二次方程求根公式、因式分解、二项式定理这些都很基础。几何方面,周长、面、体公式,勾股定理必不可少。三角函数中的基本恒等式、和差角公式、倍角公式也是重点。微积分的话,导数分的基本规则,常见函数的导数,牛顿-莱布尼茨公式这些都需要包括。概率统计中的期望、方差、排列组合也不能少。物理中的运动学公式、牛顿定律、万有引力、能量守恒也是常用的。 还要注意用户提到的格式要求,行内公式用$...$,独立公式用$$...$$,并且确保LaTeX语法正确。例如,二次方程求根公式应该写成独立的公式块,而像勾股定理这样的行内公式则用单美元符号包裹。 另外,用户要求用中文回答,结构清晰,逐步解决问题。所以可能需要先简要介绍每个分类,再列出公式,必要时加上简要说明,帮助用户理解公式的应用场景。 需要注意的是,用户可能对某些公式的推导过程或具体应用有疑问,但当前问题主要是列举常用公式,所以保持简洁,但确保公式正确无误。同时检查是否有遗漏的重要公式,比如欧拉公式在复数领域也很重要,是否应该包括在内?或者麦克斯韦方程组在物理中的重要性,但可能用户更关注基础内容,所以可能暂时不深入。 最后,确保所有公式的LaTeX格式正确,比如分符号的正确写法,上下标的位置,括号的大小调整等。例如,分中的上下限应该用_{下限}^{上限},并且使用正确的希腊字母拼写,比如π是\pi,θ是\theta等。 完成这些步骤后,整理成一个结构清晰、分类明确、公式正确的回答,帮助用户快速查阅和复习常用公式。</think>以下为各学科常用公式的分类整理,按数学逻辑层级排列: 一、代数基础 1. 二次方程求根公式: $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ 2. 因式分解公式: $$a^2 - b^2 = (a+b)(a-b)$$ $$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$$ 3. 二项式定理: $$(a+b)^n = \sum_{k=0}^{n} C_n^k a^{n-k}b^k$$ 二、几何核心公式 1. 勾股定理:直角三角形满足 $c^2 = a^2 + b^2$ 2. 圆相关公式: 周长 $C = 2πr$,面 $S = πr^2$ 3. 球体体: $$V = \frac{4}{3}πr^3$$ 三、三角函数体系 1. 基本恒等式: $$\sin^2θ + \cos^2θ = 1$$ 2. 和差公式: $$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$$ 3. 倍角公式: $$\cos2θ = \cos^2θ - \sin^2θ$$ 四、微积分基础 1. 导数基本法则: $$\frac{d}{dx}(uv) = u'v + uv'$$ 2. 常见导数: $$\frac{d}{dx}e^x = e^x$$ $$\frac{d}{dx}\ln x = \frac{1}{x}$$ 3. 分定理: $$\int_a^b f(x)dx = F(b) - F(a)$$ 五、概率统计 1. 期望值公式: $$E(X) = \sum x_i p_i$$ 2. 方差计算: $$D(X) = E(X^2) - [E(X)]^2$$ 3. 排列组合: $$C_n^m = \frac{n!}{m!(n-m)!}$$ 六、物理经典公式 1. 运动学方程: $$v = v_0 + at$$ 2. 万有引力定律: $$F = G\frac{m_1m_2}{r^2}$$ 3. 能量守恒: $$E_k = \frac{1}{2}mv^2$$ 特殊说明: 1. 所有公式需注意适用条件(如几何公式的图形限制) 2. 物理公式需注意单位制统一 3. 微积分公式成立需要满足连续性等条件 建议使用方法: (1) 理解公式推导过程 (2) 记忆关键参数关系 (3) 通过典型例题强化应用 需要任何公式的具体推导或应用示例,可随时提出补充说明要求。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值