如何通俗地理解相似矩阵
同学们大家好,今天我们来学习相似矩阵。
1 简单印象
设都是
阶方阵,若有可逆矩阵
,使得:
则称
为相似变换矩阵(Similarity transformation matrix),称
是
的相似矩阵(Similar matrix),记作:
既然相似,则一定有相同点,相同点是什么呢?它们是同一个线性映射,在不同基下的代数表达。
2 解释
我们知道,线性映射是将一个向量映射到另一个向量,比如这里将 ,映射成
。
2.1 自然基
将 在自然基下的坐标向量用
表示,
在自然基下的坐标向量用
表示。矩阵
就是将坐标向量
,映射到坐标向量
。
这里坐标向量 ,坐标向量
,矩阵
就是把
转换为
2.2 非自然基
还是将 映射成
,现在将这个映射表示在非自然基下。
将 在非自然基下的坐标向量用
表示,
在非自然基下的坐标向量用
表示。矩阵
就是将坐标向量
,映射到坐标向量
。
这里坐标向量 。矩阵
就是把
转换为
也就是说矩阵 ,矩阵
,都是将
映射到向量
,而它们只是不同基下的不同代数表达
2.3 联系
假如我们可以通过某矩阵 ,将坐标向量
变换为坐标向量
,矩阵
,将坐标向量
变换为坐标向量
这个时候 和
都是将
映射为
,因此它们是相等的,即
还有疑问?没关系,下面我们再来看个例子
3 例子
例: 为
中的一组基,求这个基下的旋转矩阵
3.1 思路
先说思路,根据题意,首先画出平面,代表 。然后标注出基
平面内任取一个点,通过矩阵 就能对其进行旋转。
下面,我们把这个过程分为映射前,与映射后。映射前用紫色表示,映射后用金色表示。
假设旋转前的点在基 下的坐标为
,旋转后的点在基
下的坐标为
,我们要求解的矩阵
,就是将坐标向量
,映射为坐标向量
如何求呢?借助自然基,假设映射前的点在自然基下的坐标为 ,映射后的点在自然基下的坐标为
,那么利用自然基下的旋转矩阵
,就能将
映射成
既然自然基可以完成旋转,那么下面只需要将非自然基转到自然基,旋转后,再转回非自然基就可以了,也就是下图中的橘色路径。
下面,我们就尝试把橘色路径表示出来。假设左边箭头的映射我们可以用矩阵 完成,那么右边箭头代表的映射就可以用
表示。
从图中我们可以看到,左边这个箭头是将非自然基下的点映射到自然基下。根据基变换的知识可知,变换所用到的矩阵 ,就是非自然基到自然基的过渡矩阵。而此过渡矩阵就是由非自然基构成的,即:
这样
而 在题目中已经给出了,这样,橘色路径上的所有元素我们就都知道了。思路讲完了,下面开始求解。
3.2 求解
根据题意,可列出等式
将 带入上式可得:
马同学马同学提供线性代数,微积分,概率论与数理统计,机器学习等知识讲解https://www.matongxue.com/madocs/2156/