什么是黎曼和?什么是定积分?

在初等数学中学习了三角形,四边形,多边形的面积计算:

现在来学习\color{Salmon}{曲边梯形} 的面积是如何定义的,以及如何计算的:

1 抛物线下的曲边梯形

1.1 问题

之前介绍过,要求f(x)=x^2 ,x\in[0,a] 之间的曲边梯形的面积A :

可以把[0,a] 均分为n 份,以每一份线段为底,以这一份线段的右侧的函数值为高做矩形:

n\to\infty 的时候,矩形面积和就是曲面下的面积:

那么,能不能以这一份的线段的左侧的函数值为高做矩形?

1.2 计算

算一算就知道了。先把[0,a] 均分成n 份,每份长为\Delta x=\frac{a-0}{n}=\frac{a}{n} ,以及各个划分点的坐标如下:

把坐标组成两个集合:

\{a_i\}=\left\{\frac{0a}{n}, \frac{a}{n}, \frac{2a}{n},\cdots, \frac{(n-1)a}{n}\right\}\quad \{b_i\}=\left\{\frac{a}{n}, \frac{2a}{n},\cdots, \frac{(n-1)a}{n},\frac{na}{n}\right\}

因此,以左侧的函数值为高的矩形和可以如下计算:

同样的道理,可以得到以右侧的函数值为高的矩形和:

n\to\infty 的时候,两者是相等的,它们都是曲边梯形的面积:

A=\lim_{n\to\infty}A_{Ln}=\lim_{n\to\infty}A_{Rn}=\frac{1}{3}a^3

2 狄利克雷函数的曲边梯形

之前介绍连续的时候就介绍过狄利克雷函数:

D(x)=\begin{cases}    1&,x为有理数\\    0&,x为无理数\end{cases}

也见识过它的古怪性质。这里也要把它拉出来作一个反面典型。D(x) 的图像是没有办法画的,非要画也就是这样的:

假设要求[0,1] 内的曲边梯形面积,尝试对[0,1] 进行5 等分,那么等分点必然为有理数点(下图为了演示方便,调整了下xy 坐标的比例):

所以这些等分点的函数值必然为1。以1为高,以等分区间长度为底作矩形,可以得到:

这些矩形的和必然为1,可以想象进行n 等分也依然为1,所以有:

A_{有理}=1

下面换一种划分方式,以邻近的两个无理数作为端点划分区间,这些区间的端点的函数值必然为0,以区间长度为底,0为高,得到的矩形和为:

A_{无理}=0

可见,对于D(x) 而言,不同的划分区间、不同的高的取法,会导致不同的矩形和:

A_{有理}\ne A _{无理}

3 黎曼和

格奥尔格·弗雷德里希·波恩哈德·黎曼(1826-1866)是德国数学家,黎曼几何学创始人,复变函数论创始人之一。在数学界搞风搞雨的黎曼猜想也是他的杰作。

基于对刚才两种情况:

  • 抛物线下的曲边梯形

  • 狄利克雷函数下的曲边梯形

的思考,看到不同划分带来的效果,黎曼先发明了黎曼和,进而定义了曲边梯形的面积,也就是定积分。

3.1 任意划分

[a,b] 不一定需要均分为n 份,可以任意分割:

很显然用于分割区间的点符合:

a < x_1 < x_2 < \cdots < x_{n-1} < b

x_0=a,x_n=b ,那么集合:

P=\{x_0, x_1, x_2, \cdots, x_{n}\}

称为[a,b] 的一个\color{Salmon}{划分} 。划分P 定义了n 个子区间:

[x_0, x_1], [x_1, x_2], \cdots,[x_{k-1}, x_k],\cdots, [x_{n-1}, x_n]

[x_0, x_1] 称为第1 个子区间,更一般的[x_{k-1},x_k] 被称为第k 个子区间:

k 个子区间的长度为\Delta x_k=x_k-x_{k-1} :

3.2 任意高度

对于某一个划分P ,在其第k 个子区间内随便选一个数\xi_k :

f(\xi_k) 作为矩形的高:

那么矩形的高度也可以是任意的:

3.3 黎曼和

根据刚才的讲解,可以得到如下定义:

设函数f(x) 在[a,b] 上有定义,在[a,b] 上任意插入若干个分点:

a = x_0 < x_1 < x_2\cdots < x_n = b

这些分点的集合:

P=\{x_0, x_1, x_2, \cdots, x_{n}\}

称为[a,b] 的一个\color{Salmon}{划分} 。划分P 定义了n 个子区间:

[x_0, x_1], [x_1, x_2], \cdots, [x_{n-1}, x_n]

它们的长度依次为:

\Delta x_1=x_1-x_0,\Delta x_2=x_2-x_1,\cdots,\Delta x_n=x_n-x_{n-1}

在每个子区间[x_{k-1},x_k] 上任取选取一个数\xi_k ,以[x_{k-1},x_k] 为底,f(\xi_i) 为高构造矩形,这些矩形的和:

A_n=\sum_{k=1}^{n}f(\xi_k)\Delta x_k

称为f 在[a,b] 上的\color{Salmon}{黎曼和} 。

之前计算的A_L 、A_R 是黎曼和:

狄利克雷函数中划分出来的矩形和A_{有理} 、A_{无理} 也是黎曼和。

4 定积分

随着[a,b] 的划分不断变细,所有子区间的长度趋于0时,黎曼和不断地逼近曲边梯形的面积:

这个过程的严格化如下:

设函数f(x) 在[a,b] 上有定义,对于[a,b] 上的任意划分P ,\xi_k 为子区间[x_{k-1},x_k] 上任意选取的数,子区间[x_{k-1},x_k] 的长度为\Delta x_k ,记:

\lambda=max\{\Delta x_1,\Delta x_2,...,\Delta x_n\}

如果下述极限存在:

I=\lim_{\lambda\to0}\sum_{k=1}^{n}f(\xi_k)\Delta x_k

则称\color{Salmon}{被积函数}f(x) 在\color{Salmon}{积分区间}[a,b] 上\color{Salmon}{可积} ,a 为\color{Salmon}{积分下限} ,b 为\color{Salmon}{积分上限} ,I 为f(x) 在[a,b] 上的\color{Salmon}{定积分} ,x 为\color{Salmon}{积分变量} ,可以标记如下:

I=\int_{a}^{b}f(x)dx

回到之前讨论的问题:

  • 抛物线下的曲边梯形:A_{Ln}=A_{Rn} ,以及各种划分都相等,所以I 存在,可积

  • 狄利克雷函数下的曲边梯形:A_{有理}\ne A_{无理} ,所以I 不存在,不可积

这里新引入的积分符号是莱布尼兹创造的:

S\quad\xrightarrow{\quad拉长\quad}\quad \int

其中,S 代表英文中的求和(“sum”),拉长的\int 则表明积分是和的极限(“limits of sums”)。这个符号相当精练,可以表达非常丰富的信息:

最新版本(可能有不定期更新):黎曼和与定积分 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

马同学图解数学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值