基于prony算法的参数辨识算法的仿真——简化版

基于prony算法的参数辨识算法的仿真的详细版欢迎订阅本博:

https://blog.csdn.net/ccsss22/article/details/115358232

1.问题描述:

 建立如下被测信号:

被测信号中包含四个振荡模态,在数据窗宽度同样为10s的前提下,利用不同的采样频率做普罗尼计算。 

2.部分程序:
 
function X = func_Prony(Signal,dt);

s     = Signal; 
L     = length(s(1:length(Signal))); 
Order = ceil(L/2); 
R     = []; 
K1    = 0;   
K2    = 0; 

%扩展矩阵 
while K1 <= Order 
    K2  = 1; 
    Re = []; 
    while K2 <= Order 
        u  = Order - K2 +1; 
        v  = L - K2; 
        m  = Order - K1 +1; 
        l  = L - K1; 
        r  = sum(s(u:v).*conj(s(m:l))); 
        Re = [Re,r]; 
        K2  = K2 + 1; 
    end 
    R = [R,Re']; 
    K1 = K1 + 1; 
end 

%计算阶数 
Order = func_Order(R); 

%计算相关参数
K2 = Order-1; 
Re = R(2:end,2:K2+1); 
b  = R(:,1); 
b  = b(2:end); 
a  = pinv(Re)*(-b); 

R1 = R(1,:); 
R1 = R1(1:K2+1); 
a1 = [1 a']; 

Ep = sum(R1.*a1); 
P  = [1 a']; 
z  = roots(P); 

%估计序列X 
ks    = 1:K2; 
X(ks) = s(ks); 

for Order = K2+1 : L 
    Lij      = 1:K2; 
    X(Order) = sum(-a'.*s(Order-Lij)); 
    Order    = Order+1; 
end 

Zh = []; 
for mm = 0:L-1 
    Zh = [Zh,z.^mm]; 
end 

Z    = Zh'; 
Z    = conj(Z); 
Zhh  = Z'; 
b    = (Zhh*Z)^(-1)*Zhh*X'; 
%最后得到的四个参数值
A     = abs(b)
f     = angle(z)/2/pi/0.001
a     = log(abs(z))/dt
theta = angle(b)/2/pi/dt


 

3.仿真结论:
       注意,这里论文中你所给的那个公式,貌似有点小错误,这里我们使用了两组公式进行计算,一组是你所提供的公式,一组是我们给的测试数据。

       仿真结果如下所示:

A-27-6
 

Prony模态识别是一种常用的信号分析方法,它可以对时域信号进行模态分解,并提取出信号中的振动频率、阻尼比和振幅等参数。这种方法的原理是基于Prony算法,它是一种通过将信号表示为指数形式,并利用特定的计算方法进行拟合的技术。 Prony模态识别的步骤如下: 1. 预处理信号:首先,需要对原始信号进行预处理,包括去除噪音、滤波和采样等操作,以获得更准确的信号数据。 2. 构建信号模型:根据信号的特点选择恰当的数学模型,例如指数模型。在Prony算法中,常用的信号模型是指数信号的线性组合。 3. 参数估计:利用Prony算法对信号的系数进行估计。Prony算法通过将信号表示为指数的线性组合,并利用最小二乘法求解系数。通过这种方法,可以解析地获得信号的振动频率、阻尼比和振幅等参数。 4. 模态分解:利用估计得到的参数,将信号进行模态分解。模态分解是将信号表示为一系列的振动模态,并分别计算每个模态的振动频率、阻尼比和振幅。 Prony模态识别方法在信号处理、结构振动分析等领域有广泛的应用。通过对信号进行模态分解,可以有效地提取出信号中的振动特性,帮助我们更好地理解和分析信号。它在故障诊断、结构健康监测等领域发挥重要作用,对机械设备的状态评估和故障预测具有一定的应用价值。同时,Prony模态识别方法的计算简单高效,能够对大量数据进行处理,具有很高的实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值