目录
1.均匀分布16元线阵概述
一个阵元间隔为半波长的均匀分布16元线阵是一种常见的天线阵列配置,通常用于无线通信、雷达和其他信号处理应用中。这种阵列的特点是阵元之间的间隔等于半个信号波长,这有助于实现波束形成和方向性较强的信号接收或发射。以下是一些关于这种阵列的特点和一般原理:
-
阵元间隔:阵元间隔等于半个信号波长,这通常称为半波长间隔。这意味着相邻阵元之间的距离是信号波长的一半。
-
波束形成:半波长间隔的线阵通常用于波束形成,这意味着可以调整阵列的信号响应以在特定方向上获得更高的接收灵敏度或发送功率。这对于雷达、通信和无线传感器网络等应用非常重要。
-
方向性:半波长间隔的均匀线阵通常在主瓣方向上具有较高的接收或发射增益,并在侧瓣方向上具有较低的响应。这增强了阵列对特定方向上信号的感知或辐射。
-
波束宽度:阵元数量和间隔会影响波束的主瓣宽度。通常,增加阵元数量会减小主瓣宽度,提高方向性。
-
相位控制:为了实现波束形成,通常需要对每个阵元的相位进行精确控制。通过调整相位,可以控制波束的指向。
-
波长和频率:阵元间隔的大小与操作的信号波长和频率有关。波长和频率之间的关系由信号的传播速度决定。
-
模拟和数字处理:阵列的输出通常需要进行模拟和/或数字信号处理,以提取或合成特定方向上的信号。
总之,半波长间隔的均匀分布16元线阵是一种常见的天线阵列配置,具有方向性、波束形成和高增益的特点,通常用于各种无线通信、雷达和信号处理应用中。它可以通过精确的相位控制来实现波束形成,以便在特定方向上优化信号接收或发射。
2.matlab核心程序
% %阵元间隔为半波长的均匀分布16元线阵,预成指向士arcsin((2i-1)/16)(i=l,2,…,16)的16个均匀加权常规波束,远场有5个互
% 不相关的目标源发射信号,每个源相对于基阵的方位为30和33,且每个信号源到达基阵的信噪比相同,均为10DB,快拍数为1000.进行波
%束域方法和阵元域方法的比较。
clear all
close all
C=340; %%声速
num=16; %% 阵元数
k=1000; %% 快拍数
Bearings=[-5]; %入射信号方位角
d=length(Bearings); %%声源数
D=0.1; %阵元间距
fc=1000; %信号频率
fs=2*fc; %采样频率
snr=10; %信噪比
e_position=[0:num-1]';
s_position=[0:d-1]';
%%波束形成
as=-1/16:1/8:3/16; %波束指向角
as=asin(as);
vs=exp(j*2*pi*fc*e_position*D*sin(as)/C);
w=1/num*vs'; %波束形成矩阵
%%入射信号
aa=90*[-1:0.002:1]; %从-90到90采样1001个点
s=exp(j*pi*[1:d].'*sin(aa/180*pi));
% % s=exp(j*pi*sin(aa/180*pi));
% % s=repmat(s,[d 1]); %声源信号
%%方向向量
Bearings=Bearings*pi/180;
TimeDelay=D*[0:num-1].'*sin(Bearings)/C; %线阵的延迟
A=exp(sqrt(-1)*2*pi*fc*TimeDelay); %方向向量
%%基阵接收信号
X=A*s; %阵列输出信号
X=awgn(X,snr); %加噪声
%%阵元域MUSIC算法
Rxx=(X*X')/k; %协方差矩阵
[EigenVectors,EigenValues]=eig(Rxx);
Lemda=diag(EigenValues); %计算矩阵特征值
[SortedLemda,Index]=sort(Lemda);
Index=flipud(Index); %将特征值降序排列
NoiseSubspace_Z(1:num,1:num-d)=EigenVectors(1:num,Index(d+1:num));%把噪声空间分成两部分,分别为加入信号空间的一部分和噪声
%%在-150到150之间进行搜索
for i=-900:900
az=exp(sqrt(-1)*2*pi*fc*D*[0:num-1]'*sin(i/10*pi/180)/C);
MUSIC_Spec_Z(i+901)=az'*az/(az'*NoiseSubspace_Z*NoiseSubspace_Z'*az);
end
%波束输出
Y=w*X; %方位估计
%%波束域MUSIC算法
B=3; %波束数
Ryy=(Y*Y')/k; %协方差矩阵
[EigenVectors,EigenValues]=eig(Ryy);
Lemda=diag(EigenValues); %计算矩阵特征值
[SortedLemda,Index]=sort(Lemda);
Index=flipud(Index); %将特征值降序排列
NoiseSubspace(1:B,1:B-d)=EigenVectors(1:B,Index(d+1:B));%把噪声空间分成两部分,分别为加入信号空间的一部分和噪声
%%在20到50之间进行搜索
for i=-150:1:50
a=exp(sqrt(-1)*2*pi*fc*D*[0:num-1]'*sin((i/10)*pi/180)/C);
MUSIC_Spec_B(i+151)=a'*w'*w*a/(a'*w'*NoiseSubspace*(w'*NoiseSubspace)'*a);
end
figure(1);
MUSIC_B=abs(MUSIC_Spec_B)/max(abs(MUSIC_Spec_B));
Delta1=[-15:0.1:5];
plot(Delta1,10*log10(MUSIC_B),'r'); %NonNormative Spatial Spectrum
xlabel('角度(度)'),ylabel('空间方位谱(DB)');
hold on
Delta=[-90:0.1:90];
MUSIC_Z=abs(MUSIC_Spec_Z)/max(abs(MUSIC_Spec_Z));
plot(Delta,10*log10(MUSIC_Z));
axis([-15 5 -60 0]);
grid on
%%画波束
% figure(2);
% ss=exp(j*pi*e_position*sin(aa/180*pi)); %% 入射信号
% plot(aa,20*log10(abs(w*ss))),xlabel('角度(度)'),ylabel('波束(DB)');
% axis([-90 90 -40 0]);