百度面试——机器学习实习

本文分享了作者在百度机器学习实习的面试经历,包括一面和二面的详细问题,涉及xgboost、GBDT、逻辑回归、特征工程、神经网络等方面,同时也讨论了数据预处理、模型评估和工程实践的重要性。
摘要由CSDN通过智能技术生成

目录

一面

二面

三面


       机器学习是人工智能领域中的一个重要分支,它利用统计学和计算机科学的知识,根据历史数据自动发现规律和预测未来结果。在机器学习中,通过使用各种算法和模型,从数据中学习并自动改进和调整参数,以获得更好的性能和准确率。以下是机器学习实习的一些基本原理和要求的介绍。

  1. 基础知识
    机器学习实习需要具备扎实的基础知识,包括数学、统计学和计算机科学等领域的知识。例如,需要理解线性代数、概率论、数理统计等数学知识,以便理解和实现各种机器学习算法。同时,需要掌握数据结构、算法和编程技能,以便能够实现和优化机器学习模型。

  2. 算法和模型
    机器学习算法和模型是机器学习的核心,其中常见的方法包括:

  • 线性回归:一种常见的回归分析方法,通过拟合一个线性模型来预测结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值