深度学习算法工程师常用基础面试题汇集

本文汇总了深度学习算法工程师面试的常见问题,涵盖了深度学习基础、模型评估、优化方法、机器学习、CNN、RNN等多个方面,旨在帮助求职者全面准备面试,提升问题解决和理论理解能力。
摘要由CSDN通过智能技术生成

目录

深度学习算法工程师面试概述

1.模型评估方法

2.基本方法

3.优化方法

4.深度学习基础

5.CNN

6.RNN

7.机器学习基础

8.集成学习

9.模型

10.树模型如何调参

11.特征工程

12.其他(分方向)


深度学习算法工程师面试概述

       深度学习算法工程师的面试通常会涵盖一系列广泛的主题,从基础知识到高级应用。以下是一些可能的面试问题:

  1. 基础知识

    • 解释什么是深度学习?它的基本原理是什么?
    • 解释反向传播算法的原理?为什么我们需要它?
    • 能否描述一下梯度下降算法?它有哪些变种?
    • 什么是过拟合和欠拟合ÿ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值