基于PSO优化的BP神经网络训练与测试matlab仿真

目录

1. 神经网络基础

2. BP神经网络原理

2.1 正向传播

2.2 反向传播

3. 粒子群优化算法

4. 基于PSO的BP神经网络优化

5.MATLAB程序

6.MATLAB仿真结果


1. 神经网络基础

        神经网络是由大量处理单元(称为神经元)相互连接而成的网络,能够学习复杂的输入输出映射关系。一个简单的神经网络由输入层、隐藏层和输出层组成。

       神经元模型通常表示为:

其中,y 是神经元的输出,f 是激活函数,wi​ 是权值,xi​ 是输入信号,b 是偏置项。

2. BP神经网络原理

BP神经网络使用反向传播算法调整网络中的权重和偏置项,以最小化误差。

2.1 正向传播

     正向传播计算神经网络各层的输出,直至输出层。对于第 l 层的第 j 个神经元,输出计算如下:

其中,zj(l)​ 是加权输入,aj(l)​ 是该层的输出,wij(l−1)​ 是从上一层到本层的权重,bj(l)​ 是偏置。

2.2 反向传播

       反向传播计算损失函数关于各层权重和偏置的梯度,并根据这些梯度更新权重和偏置。损失函数 E 定义为:

其中,tk​ 是目标输出,ak(L)​ 是输出层的输出。

      权重和偏置的更新规则为:

其中,η 是学习率。

3. 粒子群优化算法

PSO是一种启发式优化算法,模拟鸟群觅食行为,通过粒子之间的协作寻找最优解。

每个粒子有位置 x 和速度 v,其更新规则为:

其中,w 是惯性权重,c1​ 和 c2​ 是加速系数,r1​ 和 r2​ 是随机数,pbesti​ 是粒子 i 的最佳位置,gbest 是群体的最佳位置。

4. 基于PSO的BP神经网络优化

PSO可以用来优化BP神经网络的权重和偏置,从而提高网络的性能。

初始化

初始化粒子群,每个粒子代表一组权重和偏置。

设置PSO参数,如粒子数量、惯性权重、加速系数等。

评估

使用正向传播计算每个粒子对应的网络输出。

计算损失函数。

更新

根据损失函数更新粒子的速度和位置。

更新粒子的个人最好位置pbesti​ 和群体最好位置gbest。

训练过程

  • 随机初始化BP神经网络的权重和偏置。
  • 初始化粒子群的位置和速度。
  • 对于每个粒子,使用BP神经网络的正向传播计算输出。
  • 计算损失函数E。
  • 更新粒子的速度和位置。
  • 更新 pbesti​ 和gbest。
  • 使用 gbest 更新BP神经网络的权重和偏置。

重复上述步骤直到满足终止条件(例如最大迭代次数或误差低于阈值)。

  • 使用训练好的BP神经网络对测试数据进行预测。
  • 计算预测输出与实际输出之间的误差,评估模型性能。

5.MATLAB程序

.......................................................................
% 进化过程
for i = 1:Miters
    disp(i)  % 显示当前代数
    for j = 1:Npop
        % 更新速度与位置
        V(j,:)   = V(j,:) + c1*rand*(gbest(j,:) - pop(j,:)) + c2*rand*(zbest - pop(j,:));  % 速度更新
        V(j,:)   = max(min(V(j,:), Vmax), Vmin);  % 限制速度范围
        pop(j,:) = pop(j,:) + 0.2*V(j,:);  % 位置更新
        pop(j,:) = max(min(pop(j,:), popmax), popmin);  % 限制位置范围
        % 自适应变异操作
        if rand > 0.95
            pos        = unidrnd(21);
            pop(j,pos) = 5*rands(1,1);
        end
        fitness(j) = func_fitness(pop(j,:), Ni, Nh, No, net, inputn, outputn);  % 更新适应度
    end
    % 更新个体和全局最优
    for j = 1:Npop
        if fitness(j) < fgbest(j)
            gbest(j,:) = pop(j,:);
            fgbest(j)  = fitness(j);
        end
        if fitness(j) < fzbest
            zbest  = pop(j,:);
            fzbest = fitness(j);
        end
    end
    yy(i) = fzbest;  % 记录每代最优适应度
end

% 绘制适应度曲线
figure
plot(yy)
xlabel('进化代数')
ylabel('适应度')

% 应用最优解配置网络权重
x = zbest;
w1 = x(1:Ni*Nh);  % 输入至隐藏层权重
B1 = x(Ni*Nh+1:Ni*Nh+Nh);  % 隐藏层偏置
w2 = x(Ni*Nh+Nh+1:Ni*Nh+Nh+Nh*No);  % 隐藏层至输出层权重
B2 = x(Ni*Nh+Nh+Nh*No+1:end);  % 输出层偏置

net.iw{1,1} = reshape(w1, Nh, Ni);  % 配置输入层到隐藏层权重
net.lw{2,1} = reshape(w2, No, Nh);  % 配置隐藏层到输出层权重
net.b{1} = reshape(B1, Nh, 1);  % 配置隐藏层偏置
net.b{2} = B2;  % 配置输出层偏置

% 网络训练
net.trainParam.epochs = 100;  % 训练轮数
net.trainParam.lr = 0.1;     % 学习率
[net, per2] = train(net, inputn, outputn);  % 执行训练

% 网络预测
inputn_test = mapminmax('apply', testi, inputps);  % 测试数据归一化
an = sim(net, inputn_test);  % 预测输出
test_simu = mapminmax('reverse', an, outputps);  % 反归一化预测值
error = test_simu - testo;  % 计算预测误差

% 绘制预测误差图
figure
plot(error)
xlabel('样本点')
ylabel('预测误差')
ylim([-1,1]);
up4128

6.MATLAB仿真结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值