目录
空分多址(Space Division Multiple Access,简称SDMA)是一种多用户通信技术,旨在通过使用不同的空间资源将多个用户的信号分离开,从而提高通信系统的容量和效率。基于5G-NOMA(Non-Orthogonal Multiple Access,非正交多址)通信系统的SCMA(Sparse Code Multiple Access,稀疏码多址)算法,是一种用于实现多用户通信的先进技术。
1.基本原理
SCMA算法的核心是通过在码本中引入稀疏性,将用户的数据映射到稀疏的编码向量中,以实现多用户之间的分离。该算法涉及一系列数学公式,其中包括:
- 用户i的编码向量:$\mathbf{x}i = [x{i1}, x_{i2}, ..., x_{iN}]^T$
- 码本矩阵:$\mathbf{X} = [\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_K]$
- 用户i的信号:$\mathbf{s}_i = \mathbf{H}_i \mathbf{x}_i + \mathbf{n}_i$
- 接收信号:$\mathbf{y} = \mathbf{H} \mathbf{X} + \mathbf{n}$
在这些公式中,$\mathbf{H}_i$ 是用户i的信道矩阵,$\mathbf{n}_i$ 是用户i的噪声,$\mathbf{H}$ 是整体信道矩阵,$\mathbf{n}$ 是整体噪声。
2.实现过程
SCMA算法的实现过程可以概括如下:
-
确定系统参数:包括用户数量(K)、天线数量、信道条件等。
-
确定码本:通过在码本中引入稀疏性,使用高维稀疏码设计方法生成合适的编码向量。
-
用户信号映射:将用户数据映射到相应的稀疏编码向量。
-
信号传输:将映射后的编码向量通过信道传输给接收端。
-
接收与解码:接收端使用信道估计矩阵进行信号解码,恢复出原始用户数据。
3.应用领域
基于5G-NOMA通信系统的SCMA算法在多个应用领域具有潜在价值,包括但不限于:
-
移动通信:提高无线通信系统的容量和效率,支持更多用户同时连接。
-
物联网(IoT):适用于大规模设备连接,提供更稳定和高效的通信。
-
车联网:支持车辆之间的高容量通信,提升交通系统的智能化和安全性。
-
能源系统:用于智能电网等能源系统中,实现多用户之间的高效通信。
4.核心程序
%如果改为irregular的因子图,这里就不再用d_f,而应该用fn_nb中,该f对应的那一行中非零元素的个数
%上面的vn_nb和fn_nb都不再使用d_v和d_f的限制,而应该用4和6
%然后n=1:length(fn_nb(f,:)~=0)
%最后,代码里面不必使用switch这么繁琐的语句,可以直接用1:n-1和n+1:length(fn_nb(f,:)~=0),进行两个for循环,做循环乘的操作
%另外,最开始存储的Fd应该变为6+1维,前面的几个VN代表与FN有相连的情况,后面的几维取其码本中的任何一个码字都没有影响,因为是0
for n=1:PAR.d_f
switch n
case 1
nb1=fn_nb(f,2);
nb2=fn_nb(f,3);
for i=1:PAR.M
sum_tmp=0;
for j=1:PAR.M
for k=1:PAR.M
sum_tmp=Pyx(i,j,k,f)*Ivf(j,nb1,f)*Ivf(k,nb2,f)+sum_tmp;
end
end
Ifv(i,f,fn_nb(f,n))=sum_tmp;
end
case 2
nb1=fn_nb(f,1);
nb2=fn_nb(f,3);
for j=1:PAR.M
sum_tmp=0;
for i=1:PAR.M
for k=1:PAR.M
sum_tmp=Pyx(i,j,k,f)*Ivf(i,nb1,f)*Ivf(k,nb2,f)+sum_tmp;
end
end
Ifv(j,f,fn_nb(f,n))=sum_tmp;
end
case 3
nb1=fn_nb(f,1);
nb2=fn_nb(f,2);
for k=1:PAR.M
sum_tmp=0;
for i=1:PAR.M
for j=1:PAR.M
sum_tmp=Pyx(i,j,k,f)*Ivf(i,nb1,f)*Ivf(j,nb2,f)+sum_tmp;
end
end
Ifv(k,f,fn_nb(f,n))=sum_tmp;
end
end
end
end
up3012
5.仿真结果
6.参考文献
-
Nikopour, H., & Baligh, H. H. (2013). Sparse code multiple access. In 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton) (pp. 1342-1349). IEEE.
-
Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74-81.
-
Sun, L., Zhang, S., & Yang, L. (2016). A novel sparse code multiple access (SCMA) for future 5G millimeter-wave communication. In 2016 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE.
-
Xu, J., Xiao, L., Lei, X., & Wang, Z. (2019). Performance analysis and optimization of sparse code multiple access in 5G networks. IEEE Transactions on Communications, 67(12), 9024-9037.
-
Liu, Y., & Zhang, J. (2020). A survey on sparse code multiple access for 5G and beyond. IEEE Access, 8, 135036-135050.