基于SVDD算法的数据分类matlab仿真

目录

一、SVDD算法原理

二、SVDD算法数学公式

三、SVDD算法实现步骤

四、MATLAB核心程序

五、matlab仿真结果


         支持向量域描述(Support Vector Domain Description,SVDD)是一种基于支持向量机(Support Vector Machine,SVM)的分类算法,其主要目的是寻找一个最小的超球体来包围所有的正例,同时使负例尽可能远离这个超球体。SVDD算法可以用于数据分类、异常检测等问题,特别是在处理小样本、高维数据等问题上具有较好的性能。

一、SVDD算法原理

        SVDD算法的基本思想是通过求解一个最小化问题来得到一个最小的超球体,以包围所有的正例。同时,为了使负例尽可能远离这个超球体,引入了一个惩罚系数,用于控制超球体的半径和边界的距离。具体来说,SVDD的优化问题可以表示为:

min 𝜆²𝐱(𝐱) = 𝐱² + 𝑀 (1)

       其中,C是一个正则化参数,控制超球体的半径和边界的距离;X表示训练数据集,其中包括正例和负例;y表示每个样本的标签,其中1表示正例,-1表示负例;ā表示支持向量机(SVM)的参数。

       为了求解这个优化问题,SVDD算法采用了与SVM类似的二次规划方法。首先,将优化问题转化为一个二次规划问题,然后使用拉格朗日乘子法将问题转化为对偶问题。通过对偶问题求解,可以得到支持向量机的参数ā和拉格朗日乘子的值。

二、SVDD算法数学公式

SVDD算法的数学公式如下:

𝐱(𝐱) = 𝐱² + 𝑀max{0, -y + 𝐴}² (2)

      其中,y表示第t个样本到超球心的距离;𝐴是一个阈值,用于控制超球体的边界;𝑀是一个惩罚系数,用于控制超球体的半径和边界的距离。

       为了求解这个优化问题,SVDD算法采用了与SVM类似的二次规划方法。具体来说,SVDD的二次规划问题可以表示为:

min 𝑀max{0, -y + 𝐴}² + 𝐴(𝑔−𝐴²) (3)

       其中,X表示训练数据集,其中包括正例和负例;y表示每个样本的标签,其中1表示正例,-1表示负例;ā表示支持向量机(SVM)的参数。

      通过对偶问题求解,可以得到支持向量机的参数ā和拉格朗日乘子的值。具体来说,对偶问题可以表示为:

max āWISE(ā) = min max ∑无尽的i=1无尽的ai yi xi^T (4)

其中,ai是拉格朗日乘子的值;WISE(ā)是正则化项的值;α*是拉格朗日乘子的最优解。

通过对式(4)进行求导并令导数为0,可以得到支持向量机的参数ā:

ā = 0 或 ā = 1 或 ā = 0, yiyi^Txi ≤ 𝐴 (5)

        根据式(5),我们可以得到一个最小的超球体来包围所有的正例,并且使负例尽可能远离这个超球体。

三、SVDD算法实现步骤

SVDD算法的实现步骤如下:

  1. 数据预处理:对数据进行预处理,包括数据清洗、特征提取等操作,以便进行后续的分类操作。
  2. 构建初始超球体:选择一个初始的超球体来包围所有的正例,同时使负例尽可能远离这个超球体。初始的超球体的半径可以根据具体的问题进行选择。
  3. 计算距离:计算所有样本到超球心的距离,并根据距离是否大于阈值𝐴来更新支持向量机的参数ā。如果某个样本的距离大于阈值𝐴,则将其作为支持向量。
  4. 更新超球体:根据更新后的支持向量机的参数ā来更新超球体的半径和边界的距离。更新的目的是使得超球体尽可能小,同时保证所有的正例都在超球体内。
  5. 重复步骤3和4:重复执行步骤3和4,直到达到预设的迭代次数或者支持向量机的参数ā不再发生明显变化为止。
  6. 输出结果:输出最终得到的超球体以及支持向量机的参数ā。根据需要,可以将分类结果可视化或者输出到外部文件。

四、MATLAB核心程序

 

clc; clear all; close all; %#ok<CLALL>

% Create the dataset

N1 = 1000; % number of target points
N2 = 100; % number of negative points

X1 = MixGauss([1;1],[1,1],N1); % target class
X2 = MixGauss([1;1],[2,2],N2); % negative class

Xtr = [X1; X2];

Y1 = ones(N1,1);
Y2 = -ones(N2,1);

Ytr = [Y1; Y2];

ir = randperm(size(Xtr, 1));
Xtr = Xtr(ir',:);
Ytr = Ytr(ir');

%%%%%%%%%%%%%% XXXX %%%%%%%%%%%%%%%%%%%%%%

figure(1)

gscatter(Xtr(:,1), Xtr(:,2), Ytr, 'br'); % display the data

%%%%%%%%%%%%%% XXXX %%%%%%%%%%%%%%%%%%%%%%

% Classification via SVDD

N1 = nnz(Ytr(:,1)==+1); 
N2 = nnz(Ytr(:,1)==-1);

C1 = 0.5;
C2 = 1; % if Kernel is linear, choose C2 = 1/N2;
kernel='gaussian';

param=1;

[alpha, Rsquared,a,SV,YSV]= ... 
    SVDD_N1C_TRAINING(Xtr, Ytr, kernel, C1, C2, param,'on');

%%%%%%%%%%%%%% XXXX %%%%%%%%%%%%%%%%%%%%%%

% Display the classification

plotSVDD(Xtr, Ytr, Xtr, Ytr, SV, YSV, kernel, param, alpha, Rsquared, a, 2);

%%%%%%%%%%%%%% XXXX %%%%%%%%%%%%%%%%%%%%%%

% Display the metrics

y = SVDD_N1C_TEST(Xtr, Ytr, alpha, Xtr, kernel, param, Rsquared);

P = nnz(Ytr(:,1)==+1);
N = nnz(Ytr(:,1)==-1); 

Y = [y Ytr];

TN = sum(Y(:,1)==-1 & Y(:,2)==-1);
FN = sum(Y(:,1)==-1 & Y(:,2)==+1);
TP = sum(Y(:,1)==+1 & Y(:,2)==+1);
FP = sum(Y(:,1)==+1 & Y(:,2)==-1);

FNR_start = FN/P;
FPR_start = FP/N;

ACC_start = (TP+TN)/(P+N);

F1_start = 2*TP/(2*TP+FP+FN);

PPV_start = TP/(TP+FP);
NPV_start = TN/(TN+FN);

TotalN_start = TP+FP;

%figure(3)

%cm = confusionchart(Ytr, y);

%%%%%%%%%%%%%% XXXX %%%%%%%%%%%%%%%%%%%%%%

% zeroFPR_SVDD algorithm

treshold = 0.3; % treshold

[X_star, Y_star, alpha_star, Rsquared_star, ...
    a_star, SV_star, YSV_star, param_star] = ...
    ZeroFPR_SVDD(Xtr, Ytr, alpha, Rsquared, kernel, param, C1, C2, treshold, 'Y');

%%%%%%%%%%%%%% XXXX %%%%%%%%%%%%%%%%%%%%%%

% Display the classification after the algorithm cleaning

plotSVDD(X_star, Y_star, Xtr, Ytr, SV_star, YSV_star, kernel, param_star, alpha_star, Rsquared_star,a_star,4);

%%%%%%%%%%%%%% XXXX %%%%%%%%%%%%%%%%%%%%%%

% Display the metrics

y = SVDD_N1C_TEST(X_star, Y_star, alpha_star, Xtr, kernel, param_star, Rsquared_star);

P = nnz(Ytr(:,1)==+1);
N = nnz(Ytr(:,1)==-1); 

Y = [y Ytr];

TN = sum(Y(:,1)==-1 & Y(:,2)==-1);
FN = sum(Y(:,1)==-1 & Y(:,2)==+1);
TP = sum(Y(:,1)==+1 & Y(:,2)==+1);
FP = sum(Y(:,1)==+1 & Y(:,2)==-1);

FNR_start = FN/P;
FPR_start = FP/N;

ACC_start = (TP+TN)/(P+N);

F1_start = 2*TP/(2*TP+FP+FN);

PPV_start = TP/(TP+FP);
NPV_start = TN/(TN+FN);

TotalN_start = TP+FP;

%figure(5)

%cm = confusionchart(Ytr, y);
up2200

五、matlab仿真结果

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
SVDD(Support Vector Data Description)算法是一种基于支持向量机的单分类算法,可以用于异常检测和异常样本分类等任务。在Matlab中,可以使用libsvm工具包来实现SVDD算法。 首先,我们需要将数据集进行标准化处理,以确保不同特征的数值范围一致。然后,我们可以使用libsvm提供的svdd函数进行模型训练。svdd函数需要输入样本数据和相应的标签,标签分为正常样本和异常样本。 示例代码如下: ```matlab % 加载数据集 load dataset.mat; % 数据标准化处理 data = zscore(data); % 构建SVDD模型 nu = 0.1; % 异常样本的比例 model = svdd(data, 'nu', nu); % 预测新样本是否为异常 test_data = [1, 2, 3, 4; 5, 6, 7, 8]; % 示例测试数据 test_data = zscore(test_data); % 对测试数据进行标准化处理 [predict_label, accuracy, decision_values] = svmpredict(ones(size(test_data, 1), 1), test_data, model); % 结果分析 if predict_label == 1 disp('正常样本'); else disp('异常样本'); end ``` 在上述代码中,首先通过加载数据集并对数据进行标准化处理,然后设置异常样本的比例`nu`,接着使用svdd函数构建SVDD模型。最后,通过svmpredict函数对新样本进行预测,并根据预测结果判断样本是否为异常。 需要注意的是,SVDD算法的性能受到参数设置的影响,例如异常样本比例`nu`的选择。需要根据具体情况进行调整,以获得最佳的结果。另外,还可以使用交叉验证等技术对模型进行评估和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值