目录
1.旅行商问题(TSP)简介
TSP问题,即旅行商问题(Traveling Salesman Problem),是一个经典的组合优化问题。该问题可以描述为:一个旅行商人需要访问所有给定的城市,每个城市只能访问一次,并且最后需要返回到起始城市,目标是找到访问所有城市并返回起点的最短路径。
TSP问题可以用图论的语言来描述。给定一个带权完全无向图,图中每个顶点代表一个城市,每条边代表两个城市之间的路径,边上的权重代表两个城市之间的距离。TSP问题就是要求解该图中一个权值最小的Hamilton回路,即一个访问每个顶点一次并回到起点的回路,且该回路的总权值(总距离)最小。TSP问题在实际应用中具有广泛的应用价值,如物流配送、路径规划、电路板布线等领域都需要解决类似的问题。因此,对TSP问题的研究具有重要的理论意义和实际应用价值。
TSP是一个经典的组合优化问题,其目标是找到访问一组城市并返回起点的最短可能路线。在给定城市间距离的情况下,这个问题可以表述为找到一个排列,使得按照该排列顺序访问所有城市并返回起点的总距离最短。
TSP问题是NP完全问题,这意味着在多项式时间内寻找全局最优解非常困难,除非P=NP问题得到解决。然而,存在多种近似算法和启发式方法来求得高质量的解,如最近邻算法、2-opt算法、模拟退火算法、遗传算法、分支定界法以及蚁群算法等。
2.基于GA遗传优化算法的TSP问题求解
首先,遗传优化算法,其标准的优化过程如下所示:
步骤一:根据所需要处理的问题特点,选择问题解对应的编码,并给出一个初始群体,该初始群体包括N各染色体。
步骤二:计算遗传算法中群体的每一个染色体的适应函数值。
步骤三:当遗传算法的某一次迭代结果符合停止迭代条件,则算法停止迭代,如果不满足停止迭代条件,则以一个随机的概率分布值,从旧的种群中随机的选择N个染色体组成一个新的种群进行下一次的迭代。
步骤四:通过交叉得到N个染色体的交叉集合。
步骤五:设置一个较小的变异概率,使染色体中的某些基因进行变异,获得新的种群,并重复步骤二的计算过程。
其详细步骤如下:
那么基于GA的TSP流程如下所示:
编码:在TSP中,每个解都可以表示为一个城市的排列。例如,对于5个城市A, B, C, D, E,路径ABCED是一个可能的解。这种编码方式称为排列编码。
初始化:随机生成一个初始种群,其中包含N个个体(解)。每个个体代表TSP问题的一个可能路径。
适应度函数:为了评估每个个体的“适应度”,我们使用路径长度的倒数作为适应度函数。路径越短,适应度越高。
(fitness = \frac{1}{total\ distance})
其中,总距离是路径中所有城市间距离的和。
选择:选择操作根据每个个体的适应度来选择父母,用于产生下一代。常用的选择方法有轮盘赌选择、锦标赛选择等。
交叉(杂交):交叉操作是GA中的关键步骤,它模拟了生物进化中的基因重组过程。在TSP中,常用的交叉方法有PMX (Partially Mapped Crossover)、OX (Order Crossover)和LOX (Large Order Crossover)等。以PMX为例,首先随机选择两个交叉点,然后交换两个父代个体在这两点之间的子串,并通过映射修复可能产生的重复城市。
变异:变异操作模拟了生物进化中的基因突变过程,有助于保持种群的多样性。在TSP中,常见的变异方法有交换变异(随机交换路径中的两个城市)、倒置变异(随机选择一段子路径并反转)等。
终止条件:当达到预设的最大迭代次数或满足某个停止准则(如适应度达到某个阈值)时,算法终止。
3.MATLAB核心程序
% 在种群中找到最佳路线
[minDist,index] = min(totalDist);
distHistory(iter) = minDist;
if minDist < globalMin
globalMin = minDist;
optRoute = pop(index,:);
% 如果需要,绘制最佳路线
if showProg
rte = optRoute([1:n 1]);
if dims > 2
plot3(hAx,xy(rte,1),xy(rte,2),xy(rte,3),'r.-');
else
plot(hAx,xy(rte,1),xy(rte,2),'r.-');
end
title(hAx,sprintf('总距离 = %1.4f, 迭代次数 = %d',minDist,iter));
drawnow;
end
end
% 遗传算法操作
randomOrder = randperm(popSize);
for p = 4:4:popSize
rtes = pop(randomOrder(p-3:p),:);
dists = totalDist(randomOrder(p-3:p));
[ignore,idx] = min(dists); %#ok
bestOf4Route = rtes(idx,:);
routeInsertionPoints = sort(ceil(n*rand(1,2)));
I = routeInsertionPoints(1);
J = routeInsertionPoints(2);
for k = 1:4 % 对最佳路线进行变异以获得三个新路线
tmpPop(k,:) = bestOf4Route;
switch k
case 2 % 翻转
tmpPop(k,I:J) = tmpPop(k,J:-1:I);
case 3 % 交换
tmpPop(k,[I J]) = tmpPop(k,[J I]);
case 4 % 滑动
tmpPop(k,I:J) = tmpPop(k,[I+1:J I]);
otherwise % 不执行任何操作
end
end
newPop(p-3:p,:) = tmpPop;
end
pop = newPop;
4033