QPSK调制解调系统的理论分析

本文介绍了QPSK调制和解调的基本原理,涉及信号生成、解调过程,以及在MATLAB中的实现,包括在高斯信道和瑞利衰落条件下的传输和误码率测试。重点展示了QPSK在数字通信中的应用和性能评估方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.QPSK调制部分

2.QPSK解调


       QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。在19世纪80年代初期,人们选用恒定包络数字调制。这类数字调制技术的优点是已调信号具有相对窄的功率谱和对放大设备没有线性要求,不足之处是其频谱利用率低于线性调制技术。19世纪80年代中期以后,四相绝对移相键控(QPSK)技术以其抗干扰性能强、误码性能好、频谱利用率高等优点,广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入、移动通信及有线电视系统之中。

        通过完成设计内容, 学习QPSK调制解调的基本原理,同时也要复习通信系统的主要组成部分,了解调制解调方式中最基础的方法。了解QPSK的实现方法及数学原理。并对“通信”这个概念有个整体的理解,学习数字调制中误码率测试的标准及计算方法。同时还要复习随机信号中时域用自相关函数,频域用功率谱密度来描述平稳随机过程的特性等基础知识,来理解高斯信道中噪声的表示方法,以便在编程中使用。 
        理解QPSK调制解调的基本原理,并使用MATLAB编程实现QPSK信号在高斯信道和瑞利衰落信道下传输,以及该方式的误码率测试。复习MATLAB编程的基础知识和编程的常用算法以及使用MATLAB仿真系统的注意事项,并锻炼自己的编程能力,通过编程完成QPSK调制解调系统的仿真,以及误码率测试,并得出响应波形。在完成要求任务的条件下,尝试优化程序。
通过本次实验,除了培养了自主动手学到了知识之外,还可以将次研究作为一种推广,让自己来深入一层的了解QPSK以至其他调制方式的原理和实现方法。可以方便自己进行测试和对比。

      正交相移键控(Quadrature Phase Shift Keying,QPSK)是一种数字调制方式。它分为绝对相移和相对相移两种。由于绝对相移方式存在相位模糊问题,所以在实际中主要采用相对移相方式DQPSK。QPSK是一种四进制相位调制,具有良好的抗噪特性和频带利用率,广泛应用 于卫星链路、数字集群等通信业务。

1.QPSK调制部分

      QPSK调制部分,原理框图如图1所示

        QPSK与二进制PSK一样,传输信号包含的信息都存在于相位中。的别的载波相位取四个等间隔值之一,如л/4, 3л/4,5л/4,和7л/4。相应的,可将发射信号定义为

        其中,i=1,2,2,4;E为发射信号的每个符号的能量,T为符号持续时间,载波频率f等于nc/T,nc为固定整数。每一个可能的相位值对应于一个特定的二位组。例如,可用前述的一组相位值来表示格雷码的一组二位组:10,00,01,11。

      例如,对于二进制数据10,对应的QPSK信号相位为45°,即:

       s(t) = A * [cos(2πf_c t + 45°) + j*sin(2πf_c t + 45°)]

       在高斯噪声的影响下,调制信号的波形发生了明显的变化,其功率谱密度函数相对于图1中的调制信号的功率谱密度只发生了微小的变化,原因在于高斯噪声是一个均值为0的白噪声,在各个频率上其功率是均匀的,因此此结果是真确的。星座图反映可接收信号早高斯噪声的影响下发生了误码,但是大部分还是保持了原来的特性。

2.QPSK解调

       QPSK解调是调制的逆过程,其目标是从接收到的调制信号中恢复出原始的数字信息。解调过程通常包括信号解调、同步和判决三个步骤。

  1. 信号解调:接收到的信号首先经过解调器,将其从射频或中频下变频到基带。在基带处理中,可以使用正交解调的方法将接收信号分解为同相分量和正交分量。这可以通过与本地产生的正弦波和余弦波相乘来实现。

  2. 同步:由于通信系统中可能存在频率偏移、相位旋转和定时误差等问题,因此在解调之前需要进行同步处理。同步的目的是使接收端的本地信号与发送端的信号保持一致,以确保准确解调出原始信息。同步过程通常包括载波同步、相位同步和定时同步等步骤。

  3. 判决:经过同步处理后,接收信号被送入判决器进行判决。判决器的任务是确定每个符号的相位状态,并将其映射回原始的比特信息。在QPSK解调中,判决通常基于接收信号与预设阈值的比较来实现。对于每个符号周期内的采样点,判决器将其与同相分量和正交分量的阈值进行比较,从而确定该符号的相位状态。

       在接收端,QPSK信号经过信道后可能受到噪声和干扰的影响,需要通过解调器恢复原始二进制数据。常用的解调方法包括相干解调和非相干解调。

  • 相干解调: 同步于发送端载波的本地载波进行混频,然后利用低通滤波器提取出基带信号,再通过比较I路和Q路的信号幅度或相位判断发送的二进制序列。

    解调后的基带信号可以表示为:

    b_I(t) = Re[s(t) * conj(r(t))] b_Q(t) = Im[s(t) * conj(r(t))]

    其中,r(t)是接收到的已同步载波的QPSK信号,conj()表示复共轭运算。

  • 非相干解调: 常用的非相干解调方案包括差分检测法和格雷码序列辅助的非相干检测等。例如,差分检测不需精确的载波同步,而是比较连续符号之间的相位变化。

        QPSK调制解调系统在数字通信中广泛应用的原因之一是其良好的性能。在加性高斯白噪声(AWGN)信道下,QPSK的性能可以通过误比特率(Bit Error Rate, BER)来评估。误比特率是衡量数字通信系统性能的重要指标之一,它表示接收端错误判决的比特数与总传输比特数之比。

附:MATLAB的qpsk程序

................................................................
     y3=z2.*y2;
    subplot(212)
    plot(t1,y3)
    axis([0 0.4 -3 3 ]);
     title('Q支路分量相干解调信号')
    xlabel('时间/s')
    ylabel('幅值')
    grid on;
%加噪信号通过滤波器    
    [b,a]=butter(3,0.1);
   x3=filter(b,a,x3);
    [b,a]=butter(2,0.1);
   y3=filter(b,a,y3);
    figure(6)
   subplot(211)
   plot(t1,x3);
  axis([0 0.2 -3 3 ]);
   title('I支路分量相干解调信号通过滤波器')
    xlabel('时间/s')
    ylabel('幅值')
    grid on;
   subplot(212)
   plot(t1,y3);
    axis([0 0.2 -3 3 ]);
     title('Q支路分量相干解调通过滤波器')
    xlabel('时间/s')
    ylabel('幅值')
    grid on;
   out1=zeros(1,length(x3)/(2*N_samples));
   for i=0:(N/2-1)
if(x3(N_samples*i+N_samples/2)>0) 
           out1(i+1)=1;
       else
           out1(i+1)=-1;
       end
   end
   out2=zeros(1,length(y3)/(2*N_samples));
   for j=0:(N/2-1)
       if(((y3(N_samples/4+N_samples*j)+y3((N_samples*3)/4+N_samples*j))/2)>0) 
           out2(j+1)=1;
       else
           out2(j+1)=-1;
       end
   end
   out=zeros(1,length(bitstream)); 
    for k=1:length(bitstream)/2
        out(2*(k-1)+1)=out1(k);  
        out(2*(k-1)+2)=out2(k);
    end
  figure(7)
  subplot(211)
  stem(out);
  title('QPSK输出信号')
  ylabel('幅值')
  axis([0 8 -1 1]);
    spectrum=(real(fft(z1,10*length(z1)))).^2;
    S_spectrum=spectrum(1:length(spectrum)/2);
  subplot(212)
    F=0:fs/(2*length(S_spectrum)):fs/2-fs/(2*length(S_spectrum));
    plot(F,10*log10(S_spectrum))
    axis([0 50 0 60]);
    title('QPSK信号功率谱密度')
    xlabel('频率/Hz')
    ylabel('功率')
    snr=0:0.5:10;    
ber=1-(1-1/2*erfc(sqrt(0.4*snr))).^2;
    figure(8)
   semilogy(log(snr),ber,'-b*')
 title('QPSK信号误码率分析')
    xlabel('信噪比')
    ylabel('误码率')  
up143

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值