基于CSO猫群优化算法的多目标优化matlab仿真

目录

1. 猫群优化算法基础

2. 多目标优化的挑战与Pareto解

3. MOCSO中的多目标适应度评估

4. MOCSO算法流程

5.matlab程序

6.仿真结果


      猫群优化算法(CSO)是一种受猫行为启发的全局优化算法,最初由Chu等人在2010年提出,旨在模拟猫的两种典型行为——探索(Seeking)和追踪(Tracing)模式,以解决单目标优化问题。将其扩展至多目标优化领域,则需要结合多目标优化的原理,如Pareto最优解的概念,以及适当的适应度评估方法,来同时优化多个相互冲突的目标函数。

1. 猫群优化算法基础

      猫群优化算法中的猫被分为两类:领导者猫(Leader Cat, LC)和跟随者猫(Follower Cat, FC)。LC负责探索搜索空间,而FC则基于LC的信息进行局部搜索。

2. 多目标优化的挑战与Pareto解

       多目标优化问题要求同时考虑多个目标函数fm​(X),m=1,2,...,M,其中M>1。Pareto最优解定义为不存在其他解在所有目标上都优于它,至少在一个目标上更好。因此,多目标优化的目标是找到Pareto前沿上的解集。

3. MOCSO中的多目标适应度评估

       在MOCSO中,采用非支配排序和 crowding distance(拥挤度)作为适应度评估的标准,类似于NSGA-II算法。

4. MOCSO算法流程

  1. 初始化:随机生成初始猫群,包括LC和FC,每个猫的位置对应一个解向量。
  2. 适应度评估:根据多目标优化问题的目标函数,对每个解进行非支配排序和拥挤度计算。
  3. 更新LC和FC状态
    • 根据猫的位置与Pareto前沿的距离,动态调整猫的探索和追踪行为参数(α,β,γ)。
    • 根据非支配排序和拥挤度,选择部分猫作为LC,其余为FC。
  4. 位置更新:根据探索模式和追踪模式更新猫的位置。
  5. 精英保留与种群更新:保留当前Pareto前沿上的解,并可能通过一定的策略(如精英策略或基于拥挤度的选择)更新种群。
  6. 终止判断:若达到预定的迭代次数或满足收敛条件(如Pareto前沿的稳定),则停止算法;否则,返回步骤2继续迭代。

5.matlab程序

clc;
clear;
close all;
warning off;
addpath(genpath(pwd));% 添加当前目录及其子目录下的所有 MATLAB 文件至搜索路径

% 决策变量数目

nVar=[3 0];   % 第一行表示连续决策变量数,第二行表示离散决策变量数       
% 决策变量矩阵大小
VarSize=[1 , nVar(1) ; 1 , nVar(2)];    

VarMin=[-5 , 0];         % 决策变量下限
VarMax=[5 , 0];         % 决策变量上限


%算法参数设置
% 最大迭代次数
MaxIt=100;     
% 群体大小(粒子数)
nPop=50;         
nTest = 0.1 * nPop;% 测试粒子数(群体大小的百分比)
% 惯性权重
w=1;            
wdamp=0.99;     % 惯性权重衰减率
c1=2;           % 全局学习系数
MR = 0.9;        % 寻优模式切换比例 % 1 表示全体猫处于寻优模式,0 表示全体猫处于追踪模式

nGrid=5;           % 维度网格数量
alpha=0.1;       % 网格膨胀率
beta=2;            % 领导者选择压力
% 重初始化频率(比例)
reInitPer = 0.2;

% 速度限制
VelMax=0.1*(VarMax-VarMin);
VelMin=-VelMax;

%初始化粒子结构体

empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Velocity=[];
empty_particle.flag = false;
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Rank=[];
empty_particle.DominationSet=[];
empty_particle.DominatedCount=[];
empty_particle.CrowdingDistance=[];
empty_particle.GridIndex=[];
empty_particle.GridSubIndex=[];
empty_particle.index = 0;
% 初始化全体粒子数组
particles=repmat(empty_particle,nPop,1);
TestParticles = repmat(empty_particle , nTest , 1); % 测试粒子群

% 遍历粒子群
for i=1:nPop
    
    % 初始化位置
    particles(i).Position(1:nVar(1))=unifrnd(VarMin(1),VarMax(1),VarSize(1,:));
    particles(i).Position(nVar(1)+1:nVar(2)+1)=unifrnd(VarMin(2),VarMax(2),VarSize(2,:));
    
    % 初始化速度
    particles(i).Velocity(1:nVar(1))=zeros(VarSize(1,:));
    particles(i).Velocity(nVar(1)+1:nVar(2)+1)=zeros(VarSize(2,:));
     % 评估当前位置的成本
    particles(i).Cost=func_fitness(particles(i).Position , 0);
    particles(i).index = i;
    
    % 初始化个人最好位置和成本
    particles(i).Best.Position=particles(i).Position;
    particles(i).Best.Cost=particles(i).Cost;
    
end

% 初始化测试粒子群
for i=1:nTest
    % 初始化位置
    TestParticles(i).Position(1:nVar(1))=unifrnd(VarMin(1),VarMax(1),VarSize(1,:));
    TestParticles(i).Position(nVar(1)+1:nVar(2)+1)=unifrnd(VarMin(2),VarMax(2),VarSize(2,:));
    
    % 评估成本
    TestParticles(i).Cost=func_fitness(TestParticles(i).Position , 0);
end
% 初始化最优成本数组
BestCost=zeros(MaxIt,1);

% 非支配排序及初始处理
[particles , F]=NonDominatedSorting(particles);

% 计算拥挤距离
particles=CalcCrowdingDistance(particles,F);

% 对粒子群按成本进行排序
[particles , F]=func_SortPop(particles);
for j = 1 : length(particles)
    particles(j).index = j;
end

% 初始化领导猫并划分网格
F1 = particles(F{1});
Grid=func_CreateGrid(F1,nGrid,alpha);
% 将每个粒子分配到对应的网格索引
for i=1:numel(F1)
    F1(i)=func_FindGridIndex(F1(i),Grid);
end


% 粒子群运动
for it=1:MaxIt% 主循环,进行最大迭代次数
    TestBackupCosts = [TestParticles.Cost];
    % 备份测试粒子群的成本
    TestNewCosts = zeros(2 , nTest);
    for i=1:nTest% 更新测试粒子群的成本
        TestParticles(i).Cost = func_fitness(TestParticles(i).Position , it);
        TestNewCosts(: , i) = TestParticles(i).Cost;
    end% 检查测试粒子群成本是否有变化
    tf = isequal(TestBackupCosts , TestNewCosts);
    if(tf == 0)% 如果成本发生变化,重新评估主粒子群并进行非支配排序
        OldIndex = [particles.index];
        OldIndex = OldIndex';
        for i=1:nPop
            particles(i).Cost = Benchmark(particles(i).Position , it);
        end
        [particles , F]=NonDominatedSorting(particles);
        particles = CalcCrowdingDistance(particles,F);
        [particles , F]=SortPopulation(particles);
        
        NewIndex = [particles.index];
        NewIndex = NewIndex';
        % 应用博尔达计数算法确定是否需要重新初始化部分粒子
        OptIndex = BordaCountAlgorithm([OldIndex , NewIndex]);
        % 计算不需要重新初始化的粒子数量
        NumOfNoChange = floor((1 - reInitPer) * length(OptIndex));
        % 对需要重新初始化的粒子进行随机初始化
        for i = NumOfNoChange : length(OptIndex)
            particles(OptIndex(i)).Position(1:nVar(1))=unifrnd(VarMin(1),VarMax(1),VarSize(1,:));
            particles(OptIndex(i)).Position(nVar(1)+1:nVar(2)+1)=unifrnd(VarMin(2),VarMax(2),VarSize(2,:));
            
            % 重新评估成本
            particles(OptIndex(i)).Cost=Benchmark(particles((OptIndex(i))).Position , it);
            
        end
        % 重新进行非支配排序和拥挤距离计算
        [particles , F]=NonDominatedSorting(particles);
        particles = CalcCrowdingDistance(particles,F);
        [particles , F]=SortPopulation(particles);
         % 更新粒子索引
        for j = 1 : length(particles)
            particles(j).index = j;
        end
        
        % 重新初始化领导猫及划分网格
        F1 = particles(F{1});
        Grid=func_CreateGrid(F1,nGrid,alpha);
        
        for i=1:numel(F1)% 将每个粒子分配到对应的网格索引
            F1(i)=FindGridIndex(F1(i),Grid);
        end
    end
    % 随机选择进入寻优模式和追踪模式的粒子
    indices = randperm(nPop , floor(nPop*MR));
    SeekingPop = [];% 寻优模式粒子
    TracingPop = [];% 追踪模式粒子
    % 选择领导者
    leader=func_Leader(F1,beta);
    
    for i=1:nPop% 遍历
        ind = find(indices == i);
        
        if(~isempty(ind))
            % 进入寻优模式
            [SeekingParticles, leader] = Seeking( particles(i) , leader , VelMax , VelMin , VarMax , VarMin , VarSize , nVar , it);
            SeekingPop = [SeekingPop , SeekingParticles];
        else
           % 进入追踪模式
            [ particles(i) , leader ] = Tracing( particles(i) , leader , VelMax , VelMin , VarMax , VarMin , VarSize , nVar , w , c1 , it);
            TracingPop = [TracingPop , particles(i)];
        end
    end
    particles = [SeekingPop , TracingPop];
    
    % 合并寻优模式和追踪模式的粒子
    [particles , F]=NonDominatedSorting(particles);
    
  % 进行非支配排序
    particles=CalcCrowdingDistance(particles,F);
    
   % 计算拥挤距离
    [particles , F]=func_SortPop(particles);
 
    particles=particles(1:nPop);
    
   % 对粒子群按成本进行排序
    [particles , F]=NonDominatedSorting(particles);
    
 
    particles=CalcCrowdingDistance(particles,F);
    
 
    [particles , F]=func_SortPop(particles);
    for j = 1 : length(particles)
        particles(j).index = j;
    end
    
 
    F1=particles(F{1});
    
    Grid=func_CreateGrid(F1,nGrid,alpha);
    for i=1:numel(F1)
        F1(i)=func_FindGridIndex(F1(i),Grid);
    end
 
    figure(1);
    func_plot(F1);
    
    w=w*wdamp;
end
up4073

6.仿真结果

      MOCSO的性能受到多种参数的影响,包括种群大小、探索与追踪行为参数、精英保留策略等。合适的参数设置对于算法的有效性和效率至关重要。此外,MOCSO在多目标优化中的性能评估,除了关注Pareto前沿的覆盖率和分布均匀性外,还应考虑算法的收敛速度和计算效率。

猫群优化算法(Cat Swarm Optimization, CSO)是一种模拟自然界中猫的捕食行为的启发式优化算法,它是由李明伟等人于2006年提出的。该算法通过模拟猫的捕食行为,实现了对目标函数的优化Matlab实现猫群优化算法的步骤如下: 1. 初始化猫群的位置和速度,并随机生成一些食物的位置。 2. 计算每只猫到各个食物的距离,并根据距离和食物的诱惑力更新猫的速度和位置。 3. 如果某只猫到达了食物的位置,则它会停下来吃食物,更新自己的位置和速度,并重新寻找其他的食物。 4. 不断迭代,直到达到预设的停止条件。 以下是一个简单的Matlab代码实现猫群优化算法: ```matlab function [best_x, best_fval] = cat_swarm_optimization(f, lb, ub, dim, max_iter, cat_num) % 初始化猫群的位置和速度 cat_pos = rand(cat_num, dim) .* (ub - lb) + lb; cat_vel = zeros(cat_num, dim); % 随机生成一些食物的位置 food_pos = rand(cat_num, dim) .* (ub - lb) + lb; % 迭代优化过程 for iter = 1:max_iter % 计算每只猫到各个食物的距离 dist = pdist2(cat_pos, food_pos); % 计算每只猫对各个食物的诱惑力 force = 1 ./ dist.^2; % 根据诱惑力更新猫的速度和位置 cat_vel = cat_vel + force .* (food_pos - cat_pos); cat_pos = cat_pos + cat_vel; % 如果某只猫到达了食物的位置,则更新自己的位置和速度,并重新寻找其他的食物 for i = 1:cat_num if f(cat_pos(i,:)) < f(food_pos(i,:)) food_pos(i,:) = cat_pos(i,:); cat_vel(i,:) = zeros(1,dim); end end end % 返回最优解和最优值 [best_fval, idx] = min(arrayfun(f, food_pos)); best_x = food_pos(idx,:); end ``` 其中,f为目标函数,lb和ub为变量的下界和上界,dim为变量的维度,max_iter为最大迭代次数,cat_num为猫的数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值