目录
SAGE算法(Space Alternating Generalized Expectation Maximization algorithm)是一种统计信号处理中的迭代算法,主要用于盲源分离(Blind Source Separation, BSS)以及参数估计等问题。它特别适用于多维信号的参数估计,比如在宽带无线通信系统中的信道参数估计。
1.宽带信道模型
在宽带通信系统中,信号在传输过程中会经历多径传播,导致接收端接收到的信号是由多个不同延时的信号副本组成的。一个典型的宽带信道模型可以用下面的离散时间表达式来描述:
其中:
- y(t) 是接收信号。
- hl 是第 l 条路径的复数衰减系数。
- x(t) 是发送信号。
- n(t) 是加性高斯白噪声。
- L 是信道的多径数目。
2.SAGE算法原理
SAGE算法是Generalized Expectation Maximization (GEM) 算法的一个扩展,其核心思想是在期望最大化(Expectation-Maximization, EM)算法的基础上交替地对不同的参数组进行优化。在宽带信道参数估计中,SAGE算法可以用来估计信道的冲激响应(Channel Impulse Response, CIR),包括延迟、衰减幅度、相位等参数。
假设我们要估计的信道参数集为h={h0,h1,…,hL−1},发送信号为x={x0,x1,…,xN−1},接收信号为y={y0,y1,…,yN−1},其中 N 是观测信号的长度。SAGE算法的具体步骤如下:
其算法结构如下图所示:
3.SAGE算法在宽带信道参数估计中的应用
SAGE算法在宽带信道参数估计中的应用主要包括以下几个方面:
-
参数子集的分割:SAGE算法将整个参数集分割成多个子集,每次迭代只更新其中一个子集的参数,而其他的参数保持不变。这种方法可以减少计算复杂度,并且加速收敛。
-
迭代更新:对于每次迭代 t,执行以下步骤:
- 选择一个参数子集更新。
- 固定其他参数子集,仅更新当前子集的参数。
- 重复上述步骤,直到所有的参数子集都被更新一次,完成一个完整的迭代。
-
收敛速度:SAGE算法通过每次迭代只更新部分参数子集的方式,可以显著提高收敛速度。
SAGE算法在宽带信道参数估计的结构图如下图所示:
4.MATLAB仿真
..................................................................................
%%
%延迟
figure;
plot(1:Iter,Delay_set(1,:)/Ker,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,Delay_set(2,:)/Ker,'-mo',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:Iter,Delay_set(3,:)/Ker,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
axis([1,Iter,0,10]);
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('延迟收敛值');
%进入角
figure;
plot(1:Iter,180*Theta_in_set(1,:)/pi,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,180*Theta_in_set(2,:)/pi,'-mo',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:Iter,180*Theta_in_set(3,:)/pi,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('进入角收敛值');
%离开角
figure;
plot(1:Iter,180*Theta_out_set(1,:)/pi,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,180*Theta_out_set(2,:)/pi,'-mo',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:Iter,180*Theta_out_set(3,:)/pi,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('离开角收敛值');
%频偏
figure;
plot(1:Iter,180*F_offset_set(1,:)/pi,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,180*F_offset_set(2,:)/pi,'-mo',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:Iter,180*F_offset_set(3,:)/pi,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('频偏收敛值');
%幅度
figure;
plot(1:Iter,Amp_set(1,:),'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,Amp_set(2,:),'-mo',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.5,0.9,0.0]);
hold on;
plot(1:Iter,Amp_set(3,:),'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('幅度收敛值');
005
测试结果如下:
5.完整程序下载
完整可运行代码,博主已上传至CSDN,使用版本为matlab2022a: