【精品资源】基于SAGE算法的宽带信道参数估计matlab仿真

目录

1.宽带信道模型

2.SAGE算法原理

3.SAGE算法在宽带信道参数估计中的应用

4.MATLAB仿真

5.完整程序下载


       SAGE算法(Space Alternating Generalized Expectation Maximization algorithm)是一种统计信号处理中的迭代算法,主要用于盲源分离(Blind Source Separation, BSS)以及参数估计等问题。它特别适用于多维信号的参数估计,比如在宽带无线通信系统中的信道参数估计。

1.宽带信道模型

       在宽带通信系统中,信号在传输过程中会经历多径传播,导致接收端接收到的信号是由多个不同延时的信号副本组成的。一个典型的宽带信道模型可以用下面的离散时间表达式来描述:

其中:

  • y(t) 是接收信号。
  • hl​ 是第 l 条路径的复数衰减系数。
  • x(t) 是发送信号。
  • n(t) 是加性高斯白噪声。
  • L 是信道的多径数目。

2.SAGE算法原理

       SAGE算法是Generalized Expectation Maximization (GEM) 算法的一个扩展,其核心思想是在期望最大化(Expectation-Maximization, EM)算法的基础上交替地对不同的参数组进行优化。在宽带信道参数估计中,SAGE算法可以用来估计信道的冲激响应(Channel Impulse Response, CIR),包括延迟、衰减幅度、相位等参数。

     假设我们要估计的信道参数集为h={h0​,h1​,…,hL−1​},发送信号为x={x0​,x1​,…,xN−1​},接收信号为y={y0​,y1​,…,yN−1​},其中 N 是观测信号的长度。SAGE算法的具体步骤如下:

其算法结构如下图所示:

3.SAGE算法在宽带信道参数估计中的应用

SAGE算法在宽带信道参数估计中的应用主要包括以下几个方面:

  • 参数子集的分割:SAGE算法将整个参数集分割成多个子集,每次迭代只更新其中一个子集的参数,而其他的参数保持不变。这种方法可以减少计算复杂度,并且加速收敛。

  • 迭代更新:对于每次迭代 t,执行以下步骤:

    • 选择一个参数子集更新。
    • 固定其他参数子集,仅更新当前子集的参数。
    • 重复上述步骤,直到所有的参数子集都被更新一次,完成一个完整的迭代。
  • 收敛速度:SAGE算法通过每次迭代只更新部分参数子集的方式,可以显著提高收敛速度。

SAGE算法在宽带信道参数估计的结构图如下图所示:

4.MATLAB仿真

..................................................................................
%%
%延迟
figure;
plot(1:Iter,Delay_set(1,:)/Ker,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,Delay_set(2,:)/Ker,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);

hold on;
plot(1:Iter,Delay_set(3,:)/Ker,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
axis([1,Iter,0,10]);
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('延迟收敛值');


%进入角
figure;
plot(1:Iter,180*Theta_in_set(1,:)/pi,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,180*Theta_in_set(2,:)/pi,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);

hold on;
plot(1:Iter,180*Theta_in_set(3,:)/pi,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('进入角收敛值');


%离开角
figure;
plot(1:Iter,180*Theta_out_set(1,:)/pi,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,180*Theta_out_set(2,:)/pi,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);

hold on;
plot(1:Iter,180*Theta_out_set(3,:)/pi,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('离开角收敛值');



%频偏
figure;
plot(1:Iter,180*F_offset_set(1,:)/pi,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,180*F_offset_set(2,:)/pi,'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);

hold on;
plot(1:Iter,180*F_offset_set(3,:)/pi,'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('频偏收敛值');


%幅度
figure;
plot(1:Iter,Amp_set(1,:),'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on;
plot(1:Iter,Amp_set(2,:),'-mo',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.5,0.9,0.0]);

hold on;
plot(1:Iter,Amp_set(3,:),'-r>',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
hold on;
grid on;
legend('路径1','路径2','路径3');
xlabel('迭代次数');
ylabel('幅度收敛值');
005

测试结果如下:

5.完整程序下载

完整可运行代码,博主已上传至CSDN,使用版本为matlab2022a:

https://download.csdn.net/download/ccsss22/89688565

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fpga和matlab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值