第2章·深度学习1——图像/数据分类
文章平均质量分 93
本章主要学习深度学习的使用方法,并通过MATLAB编程实现。包括CNN,LSTM,GRU,VGG,GoogleNet,SPP-Net,TCN,AlexNet等常用深度学习网络,并学习如何通过优化类算法优化深度学习网络参数,获得最优的训练和预测效果。
余额抵扣
助学金抵扣
还需支付
¥99.90
¥299.90
购买须知?
本专栏为图文内容,最终完结不会低于15篇文章。
订阅专栏,享有专栏所有文章阅读权限。
本专栏为虚拟商品,基于网络商品和虚拟商品的性质和特征,专栏一经购买无正当理由不予退款,不支持升级,敬请谅解。
fpga和matlab
专业即算法,算法即数学,数学即万物。2007年开始从事MATLAB算法仿真工作,2010年开始从事FPGA系统/算法开发工作。擅长解决各种算法仿真、建模、通信、图像处理、AI、智能控制等各专业问题。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【第2章>第29节】 深度学习学习总结
本教程系统介绍了FPGA/MATLAB/Simulink联合开发及深度学习应用,包含图像分类、目标检测、序列预测等核心内容。课程从经典CNN模型(AlexNet、VGG、ResNet等)入手,深入讲解R-CNN系列目标检测模型和CNN+LSTM混合模型,并通过MATLAB仿真实践。最后重点分析了网络训练参数优化,包括卷积层设计、学习率调整等关键因素,帮助学习者掌握从理论到实践的完整知识体系,具备构建和优化深度学习模型的实际能力。原创 2026-01-17 11:15:44 · 40 阅读 · 0 评论 -
【第2章>第28节】深度学习训练参数分析3——以CNN卷积神经网络手势识别为例,学习率/训练轮数参数分析
本文研究了CNN模型中学习率和训练轮数两个关键参数的影响。实验结果表明:学习率设置为0.0025时效果最佳,当超过该值后模型精度随学习率增大而下降;训练轮数在60轮后精度增长趋缓,100轮时稳定在89%左右。这表明参数设置需平衡收敛速度和模型性能,过大的学习率会导致震荡不收敛,而过多的训练轮数则可能导致过拟合。研究为CNN参数优化提供了实验依据,建议采用中等学习率和适中的训练轮数以获得最佳效果。原创 2026-01-17 03:07:58 · 619 阅读 · 0 评论 -
【第2章>第27节】深度学习训练参数分析2——以CNN卷积神经网络手势识别为例,池化层参数分析
本文研究了池化层参数对CNN性能的影响,通过MATLAB仿真分析了池化核大小和步长对模型精度的影响。实验结果表明:1)池化核大小在4时达到最佳精度,过大会丢失细节信息;2)步长设置为2时能平衡降维效率和特征保留。研究采用10次循环测试取均值的方法,发现适当参数能有效保留关键特征、抑制噪声,提升模型性能。这些发现为CNN池化层参数选择提供了实践指导。原创 2026-01-17 01:55:28 · 227 阅读 · 0 评论 -
【第2章>第26节】深度学习训练参数分析1——以CNN卷积神经网络手势识别为例,卷积层参数分析
本文分析了卷积神经网络(CNN)中卷积层参数对模型性能的影响。通过MATLAB实验,分别测试了不同卷积核大小(2-16)和数量(6-30)对分类精度的影响。结果表明:较大的卷积核能扩大感受野但会降低精度,而增加卷积核数量能提升性能但会导致计算量增加和过拟合风险。实验采用10次循环测试取均值的方法,并使用平滑处理展示数据趋势。研究为CNN参数选择提供了实证参考,建议根据任务复杂度平衡精度与计算效率。原创 2026-01-14 23:16:05 · 613 阅读 · 0 评论 -
【第2章>第25节】深度学习应用6——使用MATLAB编程方式实现基于CNN卷积神经网络的手势识别3,通过PSO优化CNN最优卷积层数量
本课程介绍基于PSO优化CNN卷积层数量的方法,以提升手势识别准确率。主要内容包括:1)分析卷积层数量对网络性能的影响;2)使用PSO算法以识别误差最小化为目标优化卷积层数量;3)MATLAB实现步骤,包括适应度函数定义和PSO优化程序编写;4)在自制手势数据库(5类手势各48张)上进行测试,结果显示优化后网络训练误差显著降低,识别准确率提高。课程提供完整的MATLAB代码和视频教程,适合FPGA/MATLAB/Simulink学习者参考。原创 2026-01-08 22:53:35 · 299 阅读 · 0 评论 -
【第2章>第24节】深度学习应用5——使用MATLAB编程方式实现基于CNN卷积神经网络的手势识别2
本课程介绍了基于CNN卷积神经网络的手势识别MATLAB实现方法。使用MATLAB 2024b软件,包含训练样本库准备(5种手势各48张图像)、CNN网络结构搭建(4个卷积层)、训练参数设置(1000轮次)及测试程序实现。最终通过混淆矩阵评估模型性能,验证集准确率达到预期效果。课程配套提供了完整的代码实现和视频教程,适合FPGA/MATLAB/Simulink系列学习者参考。原创 2025-12-27 17:01:07 · 282 阅读 · 0 评论 -
【第2章>第23节】深度学习应用4——使用MATLAB编程方式实现基于CNN卷积神经网络的手势识别1
本文介绍了使用MATLAB 2024b实现卷积神经网络(CNN)进行手势识别的方法。详细阐述了CNN的层级结构:输入层(160×120×1)、4个卷积层(4×4卷积核)、批归一化层、ReLU激活层、最大池化层(2×2)、全连接层(5个神经元)和Softmax输出层。通过MATLAB代码展示了网络构建过程,包括convolution2dLayer、maxPooling2dLayer等关键函数的用法。该CNN网络能逐层提取手势特征,从底层边缘纹理到高层语义特征,最终实现5分类识别。文中还提供了网络结构可视化方法原创 2025-12-27 14:44:57 · 243 阅读 · 0 评论 -
【第2章>第22节】深度学习应用3——基于AlexNet模型的步态识别MATLAB仿真测试
本课程介绍了基于AlexNet模型的步态识别MATLAB实现方法。主要内容包括:使用MATLAB2024b软件平台,通过AlexNet深度学习网络提取步态能量图的时空特征;详细讲解了数据库下载调用、网络定义、训练测试程序编写等步骤;提供了完整的训练和测试MATLAB代码,并展示了仿真测试结果。课程还包含视频操作演示,帮助学习者掌握从数据处理到模型训练、测试的全流程。该方法相比传统步态识别技术能自动学习高阶特征,显著提升识别精度。配套资源包括步态数据库下载链接和详细视频教程。原创 2025-12-12 23:33:15 · 404 阅读 · 0 评论 -
【第2章>第21节】深度学习应用2——基于Vgg16模型的动物种类识别MATLAB仿真测试
本文介绍了基于VGG16模型的动物种类识别系统开发过程。主要内容包括:1)使用MATLAB 2024b软件环境;2)详细阐述了VGG16模型的迁移学习原理,包括数据预处理、特征提取和分类预测过程;3)提供了完整的MATLAB实现代码,涵盖数据加载、网络训练和测试验证环节;4)展示了训练过程和测试结果可视化;5)附有视频教程链接。该系统通过微调预训练的VGG16网络,实现了高效的动物图像分类功能,可作为人工智能基础应用的典型案例。原创 2025-12-06 17:02:15 · 398 阅读 · 0 评论 -
【第2章>第20节】深度学习应用1——基于GoogleNet的人员行为识别MATLAB仿真测试
本文介绍基于GoogleNet模型的人员行为识别方法。使用Matlab2024b实现迁移学习,对7类人类行为(跑步、进食、驾驶等)进行识别。方法包括:构建224×224像素RGB图像数据集;替换GoogleNet第142层特征学习层和输出分类层;采用冻结权重方式训练模型。Matlab程序实现了数据预处理、模型训练和测试功能,最终输出分类准确率和可视化结果。该方法为行为识别提供了有效的深度学习解决方案,相关代码和预训练模型均已提供下载链接。原创 2025-11-26 15:16:10 · 812 阅读 · 0 评论 -
【第2章>第18节】基于WOA优化的CNN+LSTM网络模型的时间序列预测MATLAB仿真测试
鲸鱼优化算法(Whale Optimization Algorithm, WOA)由Mirjalili等人于2016年提出,模拟座头鲸的泡泡网捕食行为,具有参数少、收敛速度快、全局搜索能力强等优点。原创 2025-11-19 21:39:38 · 652 阅读 · 0 评论 -
【第2章>第17节】基于PSO优化的CNN+LSTM网络模型的时间序列预测MATLAB仿真测试
本文介绍了基于粒子群优化(PSO)算法优化CNN+LSTM混合神经网络的方法。首先阐述了PSO算法的基本原理,通过模拟鸟群觅食行为来优化CNN+LSTM的超参数(n1,n2,lr)。然后详细说明了PSO-CNN+LSTM模型的实现步骤,包括适应度函数设计、参数优化和网络重构。在Matlab环境下完成了模型训练与测试,结果显示优化后的网络预测误差显著降低。文章还提供了完整代码示例和视频教程链接,为复杂非线性数据预测提供了一种有效的智能优化解决方案。原创 2025-11-16 21:36:01 · 214 阅读 · 0 评论 -
【第2章>第16节】基于CNN+LSTM网络模型的时间序列预测MATLAB仿真测试
本文介绍了基于MATLAB的CNN+LSTM混合神经网络建模与实现方法。主要内容包括:1.使用MATLAB 2024b软件构建CNN+LSTM网络模型,详细展示了网络层结构设计;2.提供了训练和测试程序代码,包括数据预处理、网络训练参数设置及预测结果分析;3.展示了预测效果对比图,给出训练集和测试集的预测误差评估;4.指出可通过配套视频教程辅助学习。该教程适合FPGA/MATLAB/Simulink开发者和人工智能基础研究者学习参考。原创 2025-11-07 05:42:26 · 677 阅读 · 0 评论 -
【第2章>第15节】CNN+LSTM网络模型的理论详解与各个网络层的参数设计分析
摘要:本文介绍了基于MATLAB 2024b的CNN+LSTM混合网络模型设计与实现。该模型通过CNN模块(包含2个卷积块)提取时序数据的空间特征,经序列展开后由LSTM层处理时序关系,最终通过全连接层实现回归预测。详细解析了各层结构(输入层、CNN特征提取、序列展开、LSTM等)的参数设置与维度变换,展示了从[32,1,1,T,N]输入到1维输出的完整处理流程。该轻量级设计(2卷积块+2LSTM层)兼具特征提取与时序建模能力,适用于小样本连续值预测任务。原创 2025-11-07 04:04:33 · 268 阅读 · 0 评论 -
【第2章>第14节】深度学习Inception V2/V3模型分析与matlab仿真
本文详细介绍了InceptionV2/V3模型在MATLAB中的实现与应用。首先阐述了InceptionV2的核心原理,包括Batch Normalization和小卷积核设计等改进。然后分别展示了两种实现方式:通过编程构建InceptionV2模型和使用MATLAB工具箱调用InceptionV3模型。重点讲解了InceptionV3工具箱的安装、图像预处理(调整为299×299)、模型训练和测试的全过程,并提供了完整的MATLAB代码示例。实验结果表明,该方法在性别分类任务上取得了90%的验证准确率。最原创 2025-11-06 20:15:12 · 356 阅读 · 0 评论 -
【第2章>第13节】深度学习Faster R-CNN模型分析与matlab仿真
经过R-CNN和Fast RCNN的积淀,Ross B. Girshick在2016年提出了新的Faster RCNN,在结构上,Faster RCNN已经将特征抽取(feature extraction),proposal提取,bounding box regression(rect refine),classification都整合在了一个网络中,使得综合性能有较大提高,在检测速度方面尤为明显。原创 2025-10-04 16:23:58 · 202 阅读 · 0 评论 -
【第2章>第12节】深度学习Fast R-CNN模型分析与matlab仿真
本文介绍了基于深度学习Fast R-CNN模型的目标检测MATLAB仿真实现。主要内容包括:1) Fast R-CNN模型原理,包含特征提取网络、ROI Pooling层、全连接层和多任务输出层四大模块;2) 在MATLAB 2024b环境下实现Fast R-CNN目标检测的仿真步骤,包括数据加载、网络训练和测试;3) 通过对比分析Fast R-CNN与R-CNN的区别,突出Fast R-CNN在检测速度、精度和端到端训练等方面的优势。文章还提供了相关代码、测试结果和视频教程资源,为读者学习Fast R-C原创 2025-10-04 16:06:20 · 175 阅读 · 0 评论 -
【第2章>第11节】深度学习R-CNN模型分析与matlab仿真
本文介绍了基于MATLAB的R-CNN目标检测模型实现方法。课程首先概述了R-CNN的三个核心模块:区域候选生成、CNN特征提取以及分类与边界框回归。随后详细讲解了MATLAB仿真实现步骤,包括数据加载、网络训练参数设置、测试图片检测等具体操作。文章还提供了数据库替换方法,通过修改图片路径和对应坐标参数即可实现自定义数据库训练。最后推荐了相关视频教程和参考文献。本课程适合FPGA/MATLAB/Simulink学习者,特别是对人工智能基础应用感兴趣的用户。原创 2025-10-03 23:54:02 · 369 阅读 · 0 评论 -
【第2章>第10节】深度学习DenseNet模型分析与matlab仿真
本文介绍了基于DenseNet深度学习模型的图像分类MATLAB实现方法。主要内容包括:1. DenseNet模型原理,详细解析了初始卷积层、密集块、过渡层等核心结构;2. 在MATLAB环境下完成DenseNet工具箱安装和测试样本准备;3. 实现图像预处理(统一缩放为224×224)、模型训练和测试的完整流程;4. 提供了混淆矩阵和准确率等测试结果分析。文章附带完整的MATLAB程序代码和操作视频教程,适合深度学习初学者快速掌握DenseNet模型的图像分类应用。通过实际测试,验证了该方案的有效性。原创 2025-09-23 18:53:35 · 267 阅读 · 0 评论 -
【第2章>第9节】深度学习ResNet模型分析与matlab仿真
本文介绍了基于MATLAB的ResNet18深度学习模型实现图像分类的完整流程。首先阐述了ResNet的核心原理,包括残差映射、跳跃连接等创新设计,并对比了不同版本ResNet的网络结构。然后详细展示了通过MATLAB编程实现ResNet18网络架构的过程,包括层定义、残差块构建和连接方式。接着给出了完整的训练流程:从图像预处理(统一缩放为224×224)、网络训练到模型测试。实验结果表明,该方法在测试集上达到90%的分类准确率,验证了ResNet模型的有效性。文章最后提供了完整的代码实现和操作视频,为读者原创 2025-09-12 08:34:26 · 310 阅读 · 0 评论 -
【第2章>第8节】Inception V1/V2/V3/V4理论详解
本文系统介绍了Inception系列模型(V1-V4)的演进过程。从2014年提出的InceptionV1(GoogLeNet)开始,系列模型通过引入多尺度并行卷积结构、批量归一化(BN)、不对称卷积分解和残差连接等关键技术,逐步解决了参数效率、训练稳定性、细长特征提取和梯度消失等问题。文章详细对比了各版本在卷积策略、降维方式、正则化技术和网络深度等方面的差异,并阐述了Inception模块如何通过1×1、3×3、5×5卷积核的并行组合大幅减少参数数量。该系列模型在图像分类任务上展现出持续改进的性能表现。原创 2025-09-05 15:08:19 · 249 阅读 · 0 评论 -
【第2章>第7节】深度学习GoogleNet模型分析与matlab仿真
本教程介绍了GoogleNet深度学习模型的原理及其MATLAB实现。GoogleNet作为2014年ImageNet冠军模型,采用创新的Inception架构,通过多尺度特征提取和1×1卷积降维,在保持深度同时减少参数量(仅500万)。教程包含三个MATLAB程序:图像尺寸转换(224×224)、模型训练和测试。训练过程使用预训练GoogLeNet模型,对性别分类数据集进行微调,最终实现了准确率约90%的分类效果。配套提供了样本数据、源码和安装指南,帮助开发者快速掌握GoogleNet的应用方法。原创 2025-09-04 17:31:59 · 923 阅读 · 0 评论 -
【第2章>第6节】深度学习MIN模型分析与matlab仿真
本文介绍了基于MATLAB的深度学习MIN(Network In Network)模型实现过程。首先阐述了MIN模型原理,包括MLP卷积层和全局平均池化等核心结构。然后详细展示了MATLAB编码实现步骤,包括网络结构搭建、图像预处理(统一为64×64大小)、模型训练和测试。实验结果表明,该模型在性别分类任务上达到91.7%的准确率。文章还提供了完整的代码实现和视频教程指引,方便读者复现和扩展该深度学习模型。原创 2025-08-21 19:20:50 · 317 阅读 · 0 评论 -
【第2章>第5节】深度学习MSRANet模型分析,MSRANet与VGGNet的关联
MSRANet是一种基于VGGNet改进的图像去噪网络,通过引入PReLU激活函数和自适应特征处理模块(AFeB、AMB、AFuB)实现高效去噪。网络采用编码器-解码器结构,在保持VGGNet小卷积核优势的同时,通过多尺度特征融合和自适应注意力机制,兼顾噪声抑制与细节恢复。AFeB模块结合通道和空间注意力优化特征权重,AMB模块并行提取不同感受野特征,AFuB模块实现跨尺度特征融合。相比传统方法,MSRANet在保持轻量化的同时显著提升了去噪性能。原创 2025-08-20 23:38:49 · 202 阅读 · 0 评论 -
【第2章>第4节】深度学习VGG16/VGG19模型分析与matlab仿真
本文介绍了使用MATLAB 2024b实现VGG16/VGG19深度学习模型的完整流程。首先概述了VGG16的网络结构(13个卷积层+3个全连接层)及其特征提取原理,然后详细演示了从图像预处理(调整为224×224)、模型训练到测试的全过程。通过对比实验,VGG19在测试集上取得了100%的准确率,优于VGG16的97.5%。文章提供了完整的MATLAB代码实现方案,包括图像尺寸转换、模型训练和测试三个核心程序模块,并附有操作视频指导。该教程适用于FPGA/MATLAB/Simulink联合开发及人工智能基原创 2025-08-20 16:06:29 · 297 阅读 · 0 评论 -
【第2章>第3节】深度学习AlexNet模型分析与matlab仿真
本教程介绍了AlexNet深度学习模型的MATLAB实现方法,包括网络结构分析、训练流程和测试应用。内容涵盖:1. AlexNet网络原理与8层架构解析;2. MATLAB环境下图像预处理(统一缩放至227x227);3. 使用迁移学习训练自定义分类器(男女识别);4. 模型验证与测试流程。教程提供完整代码和数据集,包含三个核心程序模块:图像尺寸转换、网络训练和性能测试,并附训练曲线和分类结果展示。适合FPGA/MATLAB/Simulink开发者入门深度学习应用。原创 2025-08-18 22:19:11 · 514 阅读 · 0 评论 -
【第2章>第2节】基于深度学习的图像/数据分类学习路线综述
本文系统梳理了图像分类领域的深度学习网络模型发展历程。从早期LeNet、AlexNet突破开始,详细介绍了VGG系列、Inception系列等经典网络的结构特点与创新点,包括VGG的小卷积核堆叠、Inception模块的多尺度特征融合等。重点分析了ResNet的残差连接和DenseNet的密集连接等关键技术创新,以及从分类到检测的SPP-Net、R-CNN系列模型演进。文章还提出了分阶段学习这些模型的系统路线,为深度学习在图像分类领域的研究与应用提供了全面参考。原创 2025-08-08 23:05:13 · 348 阅读 · 0 评论 -
【第2章>第1节】基于深度学习的图像/数据分类概述
本文介绍了深度学习的基础概念和发展历程,重点阐述了常见模型结构及其应用场景。内容包括:1)深度学习概述及其自动特征学习能力;2)从MP模型到现代深度学习的演进过程;3)CNN、RNN、GAN、Transformer等主流模型的结构特点;4)深度学习训练过程的6个关键步骤;5)基于深度学习的图像分类原理,突出其端到端学习和层次化特征提取的优势。文章还提供了相关MATLAB/FPGA/Simulink系列教程信息。原创 2025-08-08 22:55:05 · 318 阅读 · 0 评论
分享