1.概述
在点云配准问题中,我们通常会用相似性测度来评价两组点云之间的匹配程度,或作为迭代求解的代价方程(cost function),常见的相似性测度有均方误差(Root Mean Square Error(RMSE)、最大公共点集(Largest Common Pointset,LCP) 等。此外,还有豪斯多夫距离(Hausdorff Distance,HD)、倒角距离(Chamfer Distance,CD)和陆地移动距离(Earth Mover’s Distance,EMD)等指标也可被用于评价点云之间的匹配程度。
2.豪斯多夫距离(Hausdorff Distance,HD)
Hausdorff距离描述了度量空间中真子集之间的距离。假设有两个集合 A = { a 1 , . . . , a p } A=\{a_1,...,a_p\} A={a1,...,ap}和 B = { b 1 , . . . , b q } B=\{b_1,...,b_q\} B={b1,...,bq},则这两个集合之间的Hausdorff距离定义为:
H ( A , B ) = m a x ( h ( A , B ) , h ( B , A ) ) (1) H(A,B)=max(h(A,B),h(B,A)) \tag{1} H(A,B)=max(h(A,B),h(B,A))(1)
{ h ( A , B ) = max a ∈ A min b ∈ B ∣ ∣ a − b ∣ ∣ h ( B , A ) = max b ∈ B min a ∈ A ∣ ∣ b − a ∣ ∣ (2) \begin{cases} h(A,B)=\max_{a\in A} \min_{b\in B}||a-b|| \\ h(B,A)=\max_{b\in B} \min_{a\in A}||b-a|| \end{cases} \tag{2} {h(A,B)=maxa∈Aminb∈B∣∣a−b∣∣h(B,A)=maxb∈Bmina∈A∣∣b−a∣∣(2)
其中, H ( A , B ) H(A,B) H(A,B)被称为集合A和B之间的双向Hausdorff距离, h ( A , B ) h(A,B) h(A,B)被称为从集合A到集合B的单向Hausdorff距离。
3.倒角距离(Chamfer Distance,CD)
给定两个点集 S 1 S_1 S1和 S 2 S_2 S2,它们之间的Chamfer Distance定义为:
d C D ( S 1 , S 2 ) = 1 S 1 ∑ x ∈ S 1 min y ∈ S 2 ∣ ∣ x − y ∣ ∣ 2 2 + 1 S 2 ∑ y ∈ S 2 min x ∈ S 1 ∣ ∣ x − y ∣ ∣ 2 2 (3) d_{CD}(S_1,S_2)=\frac{1}{S_1}\sum_{x\in S_1}\min_{y\in S_2}||x-y||_2^2+\frac{1}{S_2}\sum_{y\in S_2}\min_{x\in S_1}||x-y||_2^2 \tag{3} dCD(S1,S2)=S11x∈S1∑y∈S2min∣∣x−y∣∣22+S21y∈S2∑x∈S1min∣∣x−y∣∣22(3)
4.陆地移动距离(Earth Mover’s Distance,EMD)
给定两个点集 S 1 S_1 S1和 S 2 S_2 S2,它们之间的Earth Mover’s Distance定义为:
d E M D ( S 1 , S 2 ) = min ϕ : S 1 → S 2 ∑ x ∈ S 1 ∣ ∣ x − ϕ ( x ) ∣ ∣ 2 , ϕ : S 1 → S 2 为 一 个 双 射 (4) d_{EMD}(S_1,S_2)=\min_{\phi:S_1\rightarrow S_2}\sum_{x\in S_1}||x-\phi(x)||_2, \phi: S_1\rightarrow S_2为一个双射 \tag{4} dEMD(S1,S2)=ϕ:S1→S2minx∈S1∑∣∣x−ϕ(x)∣∣2,ϕ:S1→S2为一个双射(4)