贝塞尔曲线(Bezier Curve)原理及公式推导

1. 定义

贝塞尔曲线(Bezier curve),又称贝兹曲线贝济埃曲线,是应用于二维图形应用程序的数学曲线。一般的矢量图形软件通过它来精确画出曲线,贝兹曲线由线段节点组成,节点是可拖动的支点,线段像可伸缩的皮筋,我们在绘图工具上看到的钢笔工具就是来做这种矢量曲线的。贝塞尔曲线是计算机图形学中相当重要的参数曲线,在一些比较成熟的位图软件中也有贝塞尔曲线工具,如PhotoShop等。

贝塞尔曲线的一些特性:

  • 使用 n n n个控制点 { P 1 , P 2 , . . . , P n } \{P_1,P_2,...,P_n\} {P1,P2,...,Pn}来控制曲线的形状
  • 曲线通过起始点 P 1 P_1 P1和终止点 P n P_n Pn,接近但不通过中间点 P 2 P_2 P2~ P n − 1 P_{n-1} Pn1

2. 直观理解

Step 1. 在二维平面内选三个不同的点并依次用线段连接

在这里插入图片描述

Step 2. 在线段 A B AB AB B C BC BC上找到 D D D E E E两点,使得 A D D B = B E E C \frac{AD}{DB}=\frac{BE}{EC} DBAD=ECBE

在这里插入图片描述

Step 3. 连接 D E DE DE,并在 D E DE DE上找到 F F F点,使其满足 D F F E = A D D B = B E E C \frac{DF}{FE}=\frac{AD}{DB}=\frac{BE}{EC} FEDF=DBAD=ECBE(抛物线的三切线定理)

在这里插入图片描述
Step 4. 找出符合上述条件的所有点

在这里插入图片描述
上述为一个二阶贝塞尔曲线。同样的有 n n n阶贝塞尔曲线:

曲线图示
一阶在这里插入图片描述
三阶在这里插入图片描述
四阶在这里插入图片描述
五阶在这里插入图片描述

3. 公式推导

3.1 一次贝塞尔曲线(线性公式)

定义:给定点 P 0 P_0 P0 P 1 P_1 P1,线性贝塞尔曲线只是一条两点之间的直线,这条线由下式给出,且其等同于线性插值:
B ( t ) = P 0 + ( P 1 − P 0 ) t = ( 1 − t ) P 0 + t P 1 ,   t ∈ [ 0 , 1 ] B(t)=P_0+(P_1-P_0)t=(1-t)P_0+tP_1,\text{ } t\in[0,1] B(t)=P0+(P1P0)t=(1t)P0+tP1, t[0,1]

在这里插入图片描述

其中,公式里的 P 0 P_0 P0 P 1 P_1 P1同步表示为其 x x x y y y轴坐标。

假设 P 0 P_0 P0坐标为 ( a , b ) (a,b) (a,b) P 1 P_1 P1坐标为 ( c , d ) (c,d) (c,d) P 2 P_2 P2坐标为 ( x , y ) (x,y) (x,y),则有:

x − a c − x = t 1 − t ⇒ x = ( 1 − t ) a + t c (3-1) \frac{x-a}{c-x}=\frac{t}{1-t} \Rightarrow x=(1-t)a+tc \tag{3-1} cxxa=1ttx=(1t)a+tc(3-1)

同理有:

y − b d − y = t 1 − t ⇒ y = ( 1 − t ) b + t d (3-2) \frac{y-b}{d-y}=\frac{t}{1-t} \Rightarrow y=(1-t)b+td \tag{3-2} dyyb=1tty=(1t)b+td(3-2)

于是可将 ( 3 − 1 ) ( 3 − 2 ) (3-1) (3-2) (31)(32)简写为:

B ( t ) = ( 1 − t ) P 0 + t P 1 ,   t ∈ [ 0 , 1 ] (3-3) B(t)=(1-t)P_0+tP_1 ,\text{ } t\in[0,1] \tag{3-3} B(t)=(1t)P0+tP1, t[0,1](3-3)

3.2 二次贝塞尔曲线(二次方公式)

定义:二次贝塞尔曲线的路径由给定点 P 0 P_0 P0 P 1 P_1 P1 P 2 P_2 P2的函数 B ( t ) B(t) B(t)给出:
B ( t ) = ( 1 − t ) 2 P 0 + 2 t ( 1 − t ) P 1 + t 2 P 2 ,   t ∈ [ 0 , 1 ] B(t)=(1-t)^{2} P_0+2t(1-t)P_1+t^2P_2,\text{ } t\in [0,1] B(t)=(1t)2P0+2t(1t)P1+t2P2, t[0,1]

在这里插入图片描述

假设 P 0 P 1 P_0P_1 P0P1上的点为 A A A P 1 P 2 P_1P_2 P1P2上的点为 B B B A B AB AB上的点为 C C C(也即 C C C为曲线上的点。则根据一次贝塞尔曲线公式有:

A = ( 1 − t ) P 0 + t P 1 B = ( 1 − t ) P 1 + t P 2 C = ( 1 − t ) A + t B (3-4) \begin{array}{l} A=(1-t)P_0+tP_1 \\ B=(1-t)P_1+tP_2 \\ C=(1-t)A+tB \end{array} \tag{3-4} A=(1t)P0+tP1B=(1t)P1+tP2C=(1t)A+tB(3-4)

将上式中 A A A B B B带入 C C C中,即可得到二次贝塞尔曲线的公式:

B ( t ) = ( 1 − t ) 2 P 0 + 2 t ( 1 − t ) P 1 + t 2 P 2 ,   t ∈ [ 0 , 1 ] (3-5) B(t)=(1-t)^{2} P_0+2t(1-t)P_1+t^2P_2,\text{ } t\in [0,1] \tag{3-5} B(t)=(1t)2P0+2t(1t)P1+t2P2, t[0,1](3-5)

3.3 三次贝塞尔曲线(三次方公式)

同理可得三次贝塞尔曲线公式:

B ( t ) = ( 1 − t ) 3 P 0 + 3 t ( 1 − t ) 2 P 1 + 3 t 2 ( 1 − t ) P 2 + t 3 P 3 ,   t ∈ [ 0 , 1 ] (3-6) B(t)=(1-t)^{3} P_0+3t(1-t)^2P_1+3t^2(1-t)P_2+t^3P_3,\text{ } t\in [0,1] \tag{3-6} B(t)=(1t)3P0+3t(1t)2P1+3t2(1t)P2+t3P3, t[0,1](3-6)

3.4 n n n次贝塞尔曲线(一般参数公式)

定义:给定点 P 0 , P 1 , . . . , P n P_0,P_1,...,P_n P0,P1,...,Pn,则 n n n次贝塞尔曲线由下式给出:
在这里插入图片描述

n n n次贝塞尔曲线的公式可由如下递归表达:

P 0 n = ( 1 − t ) P 0 n − 1 + t P 1 n − 1 ,   t ∈ [ 0 , 1 ] (3-7) P_0^n=(1-t)P_0^{n-1}+tP_1^{n-1},\text{ }t\in[0,1] \tag{3-7} P0n=(1t)P0n1+tP1n1, t[0,1](3-7)

进一步可以得到贝塞尔曲线的递推计算公式:

P i k { P i ,   k = 0 ( 1 − t ) P i k − 1 + t P i + 1 k − 1 ,   k = 1 , 2 , . . . , n ;   i = 0 , 1 , . . . , n − k P_i^k \begin{cases} P_i , \text{ } k=0 \\ (1-t)P_i^{k-1}+tP_{i+1}^{k-1} , \text{ } k=1,2,...,n; \text{ } i=0,1,...,n-k \end{cases} Pik{Pi, k=0(1t)Pik1+tPi+1k1, k=1,2,...,n; i=0,1,...,nk

这就是德卡斯特里奥算法(De Casteljau’s algorithm)

参考

[1] https://www.jianshu.com/p/0c9b4b681724
[2] https://www.jianshu.com/p/8f82db9556d2

  • 148
    点赞
  • 644
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
贝塞尔曲线是一种应用于二维图形应用程序的数学曲线,由线段和节点组成。节点是可拖动的支点,线段像可伸缩的皮筋。贝塞尔曲线可以通过控制点的个数和位置来决定最终曲线的形状。一阶贝塞尔曲线是直线,而其他多阶贝塞尔曲线都是抛物线。贝塞尔曲线在矢量图形软件中被广泛使用,如Photoshop等。\[1\]\[3\] 贝塞尔曲线的数学原理涉及到贝塞尔曲线的参数方程和控制点的计算。具体来说,对于n阶贝塞尔曲线,其参数方程可以表示为: B(t) = Σ(i=0 to n) (nCi) * (1-t)^(n-i) * t^i * Pi 其中,B(t)是曲线上的点,t是参数,取值范围为0到1,n是曲线的阶数,nCi是组合数,Pi是控制点的坐标。通过调整控制点的位置和个数,可以得到不同形状的贝塞尔曲线。 在Matlab中,可以使用bezier函数来绘制贝塞尔曲线。该函数接受一个控制点矩阵作为输入,并返回曲线上的点坐标。例如,使用以下代码可以绘制一个三阶贝塞尔曲线: ```matlab P = \[0 0; 1 2; 3 -1; 4 0\]; % 控制点矩阵 t = linspace(0, 1, 100); % 参数t的取值范围 B = bezier(P, t); % 计算曲线上的点坐标 plot(B(:,1), B(:,2)); % 绘制曲线 ``` 这段代码中,P是一个4行2列的矩阵,每一行代表一个控制点的坐标。t是参数t的取值范围,可以根据需要进行调整。bezier函数会返回一个100行2列的矩阵B,其中每一行代表曲线上的一个点的坐标。最后使用plot函数将曲线绘制出来。 总结起来,贝塞尔曲线是一种由线段和节点组成的数学曲线,可以通过调整控制点的位置和个数来控制曲线的形状。在Matlab中,可以使用bezier函数来绘制贝塞尔曲线。 #### 引用[.reference_title] - *1* *2* [贝塞尔曲线的数学原理](https://blog.csdn.net/weixin_34270606/article/details/89082935)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [贝塞尔曲线Bezier Curve原理公式推导及matlab代码实现](https://blog.csdn.net/sinat_35676815/article/details/120884682)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值