Waymo离线点云序列3D物体检测网络 (3D Auto Labeling): Offboard 3D Object Detection from Point Cloud Sequences

在这里插入图片描述
本文介绍一篇Waymo基于点云序列的3D物体检测网络:3D Auto Labeling,论文已收录于CVPR 2021。 这里重点是理解本文提出的 Object-centric Auto Labeling

论文链接为:https://arxiv.org/abs/2103.05073

2021-09-02补充:本文作者之一对这篇论文的解读。

Waymo研发经理|自动驾驶感知前沿技术介绍


0. Abstract

当前的 3D物体识别 研究主要集中在实时场景上,但仍有许多未充分探索的离线感知场景,例如使用机器自动生成高质量的 3D 标签。

由于输入和速度限制,现有的3D物体检测器无法满足离线使用的高质量需求。因此本文提出了一种使用点云序列数据的新型离线3D物体检测模型。通过捕获物体在不同帧的视图,本文设计了一个离线检测器,通过多帧物体检测新的以物体为中心的细化模型来使用点云序列进行检测。

Waymo 开放数据集上进行评估后,与最先进的在线检测器以及与离线基准相比,本文设计的 3D自动标注 模型显示出更高的性能,甚至可以达到人工标注的水平。


1. Introduction

在引言中,作者提出在点云序列中,物体的不同视角包含关于其几何形状的互补信息,如左图所示。因此本文提出使用多帧点云作为输入,同时又使用多物体追踪将不同帧检测的物体关联起来,最终提取物体点云数据和检测框,检测性能如右图所示。

在这里插入图片描述在这里插入图片描述

2. Offboard 3D Object Detection

问题描述:设输入点云序列 { P i ∈ R n i × C } , i = 1 , 2 , … , N \left\{\mathcal{P}_{i} \in \mathbf{R}^{n_{i} \times C}\right\}, i=1,2, \ldots, N {PiRni×C},i=1,2,,N,其中 N N N表示总帧数, P i \mathcal{P}_{i} Pi表示每一帧点云。同时也已知不同帧的传感器坐标位置 { M i = [ R i ∣ t i ] ∈ R 3 × 4 } , i = 1 , 2 , … , N \left\{\mathcal{M}_{i}=\left[R_{i} \mid t_{i}\right] \in \mathbf{R}^{3 \times 4}\right\}, i=1,2, \ldots, N {Mi=[Riti]R3×4},i=1,2,,N,因此我们可以补偿自车运动。对于每一帧输出为 3D bounding box (中心位置,大小和方向),物体类别,以及所有物体的ID号

与以往的以frame为中心的多帧输入检测不同,本文提出以object为中心进行多帧检测,使用多帧检测器输出初始的物体位置,对于每一个物体,通过追踪可以提取所有与物体相关的点云数据和检测box。然后对物体轨迹数据进一步处理,最终输出追踪级别的物体boxes,这一个过程与人工标注很相似(定位、追踪、追踪优化),因此也被成为 3D Auto Labeling


3. 3D Auto Labeling Pipeline (重点)

算法框架如下图所示,输入为点云序列,3D物体检测器首先给出每一帧中的物体类型、得分、3D bounding box。然后使用多物体追踪器将不同帧的物体boxes关联起来。提取出每一个物体的点云数据和 3D bounding box,最终通过object-centric auto labeling来生成标签。

3D物体检测中,本文提出使用多帧的MVF++作为检测器,通过自车运动将其余帧点云坐标转换为当前帧坐标;多物体追踪中本文使用了AB3DMOT作为追踪器。接下来是提取点云数据 { P j , k } , k ∈ S j \left\{\mathcal{P}_{j, k}\right\}, k \in S_{j} {Pj,k},kSj3D bounding box { B j , k } , k ∈ S j \left\{\mathcal{B}_{j, k}\right\}, k \in S_{j} {Bj,k},kSj
在这里插入图片描述


3.1 Satic Object Auto Labeling

从图3可以看到,自动生成标签环节有三个小模块:motion state classificationstatic object auto labelingdynamic object auto labeling。本文中使用了一个线性分类器来判断物体是否静止,准确度可以达到99%,具体细节可以看文章附录E。

下面介绍静态物体自动标注模块,对于静态物体,该模块将物体在不同帧的点云进行合并得到新的点云 P j = ∪ { P j , k } \mathcal{P}_{j}=\cup\left\{\mathcal{P}_{j, k}\right\} Pj={Pj,k},预测出单个box,然后根据传感器位置转换到不同帧中,流程图如图4所示。首先会将点云转换为box坐标,这里使用得分最高的box作为初始box。然后使用实体分割网络分割出前景点,同时迭代回归物体 bounding box,所有网络都是以PointNet作为网络架构,具体细节可以看文章附录F。

在这里插入图片描述在这里插入图片描述

3.2 Dynamic Object Auto Labeling

动态物体自动标注流程图如图5所示。这里使用滑动窗口方式预测出每一帧的box,有两个分支,一个点云序列分支,一个box序列分支。

点云子序列为 { P j , k } k = T − r T + r \left\{\mathcal{P}_{j, k}\right\}_{k=T-r}^{T+r} {Pj,k}k=TrT+r,根据当前帧检测box ( B j , T \mathcal{B}_{j, T} Bj,T) 将点云子序列转换为box坐标,同样地使用分割网络分割出前景点,然后通过点云编码网络将物体点云编码为Point Embedding

对于Box子序列 { B j , k ′ } k = T − s T + s \left\{\mathcal{B}_{j, k}^{\prime}\right\}_{k=T-s}^{T+s} {Bj,k}k=TsT+s,同样地将box坐标转换为帧 T T T下的坐标。将点云序列编码为trajectory embedding,最后与Point Embedding相结合,再通过一个回归网络输出当前帧 T T T的预测。


4. Experiments

下面是本文算法与其余3D物体检测算法在Waymo val set的比较。
在这里插入图片描述
下面是人工标注半监督学习的对比实验。

Comparing human labels and auto labels in 3D object detectionResults of semi-supervised learning with auto labelsAblation studies on the improvements to 3D detector MVFAblation studies on 3D detection AP vs. temporal contexts
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

下面是静态自动标注动态自动标注时域大小的对比实验。

Ablation studies of the static auto labeling modelComparing with alternative designs of dynamic object auto labelingEffects of temporal context sizes for object auto labeling
在这里插入图片描述在这里插入图片描述在这里插入图片描述
  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测是计算机视觉领域的一项重要任务,用于在图像或视频中识别和定位特定对象。制作目标检测模型所需的关键步骤之一是标注(labeling)。 标注是将图像或视频中的目标对象框起来并分配相应的类别标签,以便机器学习算法可以学习并识别这些对象。标注的过程需要人工干预,专业的标注员根据特定的标注规则和要求,在每个待标注的图像或视频中找到目标对象,并使用边框表示其位置,然后为其分配正确的类别标签。 标注制作的质量直接影响目标检测模型的性能和准确度。准确的标注能够提供高质量的训练数据,使模型能够学到正确的目标特征和位置信息。因此,标注人员需要有足够的经验和专业知识,以避免标注错误或不一致。 标注制作需要耗费大量的时间和人力。对于大规模数据集,标注员需要逐个图像或视频进行标注,这是一项非常耗时的任务。同时,为了确保标注的一致性和准确性,通常需要多个标注员对同一数据集进行复核和验证。 目标检测利用标注制作的好处是可以为计算机视觉算法提供有监督的训练数据。通过标注,我们可以构建一个高质量的目标检测数据集,用于训练和评估目标检测模型。这样的模型可以应用于各种实际场景,例如自动驾驶、安防监控、人脸识别等,提供更准确和可靠的目标检测功能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值