目录
The static object auto labeling model
The dynamic object auto labeling model
论文地址:[2103.05073] Offboard 3D Object Detection from Point Cloud Sequences (arxiv.org)
概要
该论文提出了一种利用点云序列数据进行离线三维物体检测的方法,称为3D Auto Labeling。相比现有的三维物体检测方法,该方法能够更好地满足离线场景下高质量的要求。该方法利用点云序列中不同帧所捕获的物体的互补视角信息,通过多帧物体检测和新颖的物体中心优化模型来利用时间点云。在Waymo公开数据集上的评估结果表明,该方法相比于现有的三维物体检测方法和离线基准有显著提升,甚至可以与人工标签的效果媲美。该方法还具有半监督学习和应用自动标签的能力。

关键是使用点云序列数据来进行物体检测,并设计了一个新的离线物体检测管道,利用多帧物体检测和新的物体中心检测模型来提高检测准确性。同时,还利用了物体轨迹数据来对物体的运动状态进行分类,并引入了一个动态物体自动标注模型和一个静态物体自动标注模型来生成高质量的自动标注数据。这些自动标注数据可以用于半监督学习,以提高检测性能。
Motivation
- 由于有限的输入和

论文提出一种基于点云序列的3DAutoLabeling方法,通过多帧检测和新模型提高离线3D物体检测精度,达到甚至超越人工标注的效果,适用于半监督学习。
最低0.47元/天 解锁文章
2402

被折叠的 条评论
为什么被折叠?



