八叉树结构
八叉树结构是由 Hunter 博士于1978年首次提出的一种数据模型。八叉树结构通过对三维空间的几何实体进行体元剖分,每个体元具有相同的时间和空间复杂度,通过循环递归的划分方法对三维空间的几何对象进行剖分,从而构成一个具有根节点的方向图。在八叉树结构中如果被划分的体元具有相同的属性,则该体元构成一个叶节点;否则继续对该体元剖分成8个子立方体,依次递剖分,如下示意图所示。
八叉树是一种用于描述三维空间的树状数据结构。八叉树的每个节点表示一个正方体的体积元素,每个节点有八个叶子节点,这八个叶子节点所表示的体积元素加在一起就等于父节点的体积。一般中心点作为节点的分中心。八叉树若不为空树的话,树中的任意节点的子节点恰好只会有八个或零个,子节点不会有0和8以外的数目。
八叉树的叶子节点代表了分辨率最高的情况。例如分辨率设置为0.01m,那么每个叶子就是一个1cm的小方块。
简单来说,八叉树的存储结构可用于对应元素的查找,依次对立方体进行划分,寻找查找元素对应的小立方体再次进行划分查找。
生成的八叉树的节点可分为三类:
灰节点: 它对应的立方体部分的为查找元素所占据;
白节点: 它对应的立方体没有查找元素的内容;
黑节点: 它对应的立方体全部为查找元素所占据。
八叉树的存储结构
八叉树有三种不同的存贮结构,分别是规则方式、线性方式以及一对八方式。相应的八叉树也分别称为规则八叉树、线性八叉树以及一对八式八叉树。不同的存贮结构的空间利用率及运算操作的方便性是不同的。分析表明,一对八式八叉树优点更多一些。
1. 规则八叉树:
规则八叉树的存储结构用一个有九个字段的记录来表示树中的每个节点。其中一个字段来描述该节点的特性(再目前假定下,只要描述他是灰,白,黑三类节点中的哪一类就行。)其余八个字段分别用来存放指向其八个子节点的指针。 这是最普遍使用的表示树形结构的存储结构的方式。
规则八叉树缺陷较多,最大的问题是指针占用了大量的空间。假定每个指针要用两个字节表示,而结点的描述用一个字节,那么存放指针要占总的存贮量的94%。因此,这种方法虽然十分自然,容易掌握,但在存贮空间的使用率方面不很理想。
2.线性八叉树:
线性八叉树注重考虑如何提高空间利用率。用某一预先确定的次序遍历八叉树(例如以深度第一的方式),将八叉树转换为一个线性表,表的每个元素与一个节点相对应。对于节点的描述可以相对丰富一点,一如可以用适当的方式来说明他是否是叶节点,如果不是叶节点的话,还可用其八个子节点值的平均值作为非叶节点的值。这样,可以再内存中以紧凑的方式来表示线性表,可以不用指针或者仅用一个指针即可。
线性八叉树不仅节省存储空间,对某些运算也较为方便。但为此的代价是丧失了一定的灵活性。
3.一对八式八叉树
一个非叶结点有八个子结点,为了确定起见,将它们分别标记为0,1,2,3,4,5,6,7。从上面的介绍可以看到,如果一个记录与一个结点相对应,那么在这个记录中描述的是这个结点的八个子结点的特性值。而指针给出的则是该八个子结点所对应记录的存放处,而且还隐含地假定了这些子结点记录存放的次序。也就是说,即使某个记录是不必要的(例如,该结点已是叶结点),那么相应的存贮位置也必须空闲在那里,以保证不会错误地存取到其它同辈结点的记录。这样当然会有一定的浪费,除非它是完全的八叉树,即所有的叶结点均在同一层次出现,而在该层次之上的所有层中的结点均为非叶结点。
参考网站
1、https://www.cnblogs.com/Glucklichste/p/11505743.html
2、https://blog.csdn.net/qq_37855507/article/details/90957798